Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Kawasaki Disease | Research

Prediction of repeated intravenous immunoglobulin resistance in children with Kawasaki disease

Authors: Yaheng Lu, Tingting Chen, Yizhou Wen, Feifei Si, Xindan Wu, Yanfeng Yang

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Repeated intravenous immunoglobulin (IVIG) resistance prediction is one of the pivotal topics in Kawasaki disease (KD). Those non-responders of repeated IVIG treatment might be improved by an early-intensified therapy to reduce coronary artery lesion and medical costs. This study investigated predictors of resistance to repeated IVIG treatment in KD.

Methods

A total of 94 children with IVIG-resistant KD treated at our hospital between January 2016 and August 2020 were retrospectively analyzed. According to the therapeutic effect of a second dose IVIG treatment, the children were divided into repeated IVIG-responsive group and repeated IVIG-resistant group, and the clinical and laboratory data were compared. Predictors of repeated IVIG resistance and the optimal cut-off value were determined by multiple logistic regression analysis and receiver operating characteristic (ROC) curve analysis.

Results

The Pre-IVIG laboratory data showed the percentage of neutrophils (N%) and levels of serum procalcitonin (PCT), N-terminal pro-brain natriuretic peptide (NT-proBNP) were significantly higher in repeated IVIG-resistant group compared with repeated IVIG-responsive group, while levels of serum sodium and albumin (ALB) were significantly lower (P < 0.05). The post-IVIG laboratory values of N% and C-reactive protein (CRP) were significantly higher in the repeated IVIG-resistant group compared with repeated IVIG-responsive group, while hemoglobin and ALB were lower (P < 0.05). Pre-IVIG PCT and post-IVIG CRP exhibited AUC of 0.751 and 0.778 respectively in predicting repeated IVIG resistance in KD. Pre-IVIG PCT > 1.81ng/ml (OR 4.1, 95 % CI 1.4 ~ 12.0, P < 0.05) and post-IVIG CRP > 45 mg/L (OR 4.6, 95 % CI 1.3 ~ 16.2, P < 0.05) were independent predictors of repeated IVIG resistance in KD.

Conclusions

Our study illustrates the serum PCT level before initial IVIG treatment and CRP after initial IVIG could be used to predict repeated IVIG resistance in KD.
Literature
1.
go back to reference McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017; 135(17):e927-e99.CrossRef McCrindle BW, Rowley AH, Newburger JW, Burns JC, Bolger AF, Gewitz M, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a scientific statement for health professionals from the American Heart Association. Circulation. 2017; 135(17):e927-e99.CrossRef
2.
go back to reference Duignan S, Doyle SL, McMahon CJ. Refractory Kawasaki disease: diagnostic and management challenges. Pediatric Health Med Ther. 2019; 10:131–9.CrossRef Duignan S, Doyle SL, McMahon CJ. Refractory Kawasaki disease: diagnostic and management challenges. Pediatric Health Med Ther. 2019; 10:131–9.CrossRef
3.
go back to reference Song R, Yao W, Li X. Efficacy of four scoring systems in predicting intravenous immunoglobulin resistance in children with kawasaki disease in a children’s hospital in Beijing, north China. J Pediatr. 2017; 184:120–4.CrossRef Song R, Yao W, Li X. Efficacy of four scoring systems in predicting intravenous immunoglobulin resistance in children with kawasaki disease in a children’s hospital in Beijing, north China. J Pediatr. 2017; 184:120–4.CrossRef
4.
go back to reference Fukazawa R, Kobayashi J, Ayusawa M, Hamada H, Miura M, Mitani Y, et al. JCS/JSCS 2020 Guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease. Circ J. 2020; 84(8):1348–1407.CrossRef Fukazawa R, Kobayashi J, Ayusawa M, Hamada H, Miura M, Mitani Y, et al. JCS/JSCS 2020 Guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease. Circ J. 2020; 84(8):1348–1407.CrossRef
5.
go back to reference Phuong LK, Curtis N, Gowdie P, Akikusa J, Burgner D. Treatment options for resistant Kawasaki disease. Paediatr Drugs. 2018; 20(1):59–80.CrossRef Phuong LK, Curtis N, Gowdie P, Akikusa J, Burgner D. Treatment options for resistant Kawasaki disease. Paediatr Drugs. 2018; 20(1):59–80.CrossRef
6.
go back to reference Son MB, Gauvreau K, Ma L, Baker AL, Sundel RP, Fulton DR, et al. Treatment of Kawasaki disease: analysis of 27 US pediatric hospitals from 2001 to 2006. Pediatrics. 2009; 124(1):1–8.CrossRef Son MB, Gauvreau K, Ma L, Baker AL, Sundel RP, Fulton DR, et al. Treatment of Kawasaki disease: analysis of 27 US pediatric hospitals from 2001 to 2006. Pediatrics. 2009; 124(1):1–8.CrossRef
7.
go back to reference Dionne A, Burgner D, De Ferranti S, Singh-Grewal D, Newburger J, Dahdah N. Variation in the management of Kawasaki disease. Arch Dis Child. 2020; 105(10):1004–6.CrossRef Dionne A, Burgner D, De Ferranti S, Singh-Grewal D, Newburger J, Dahdah N. Variation in the management of Kawasaki disease. Arch Dis Child. 2020; 105(10):1004–6.CrossRef
8.
go back to reference Chan H, Chi H, You H, Wang M, Zhang G, Yang H, et al. Indirect-comparison meta-analysis of treatment options for patients with refractory Kawasaki disease. BMC Pediatr. 2019; 19(1):158.CrossRef Chan H, Chi H, You H, Wang M, Zhang G, Yang H, et al. Indirect-comparison meta-analysis of treatment options for patients with refractory Kawasaki disease. BMC Pediatr. 2019; 19(1):158.CrossRef
9.
go back to reference Roberts SC, Jain S, Tremoulet AH, Kim KK, Burns JC, KIDCARE Multicenter Study Group, et al. The Kawasaki Disease Comparative Effectiveness (KIDCARE) trial: A phase III, randomized trial of second intravenous immunoglobulin versus infliximab for resistant Kawasaki disease. Contemp Clin Trials. 2019; 79:98–103.CrossRef Roberts SC, Jain S, Tremoulet AH, Kim KK, Burns JC, KIDCARE Multicenter Study Group, et al. The Kawasaki Disease Comparative Effectiveness (KIDCARE) trial: A phase III, randomized trial of second intravenous immunoglobulin versus infliximab for resistant Kawasaki disease. Contemp Clin Trials. 2019; 79:98–103.CrossRef
10.
go back to reference Dionne A, Bucholz EM, Gauvreau K. Impact of socioeconomic status on outcomes of patients with Kawasaki disease. J Pediatr. 2019; 212:87–92.CrossRef Dionne A, Bucholz EM, Gauvreau K. Impact of socioeconomic status on outcomes of patients with Kawasaki disease. J Pediatr. 2019; 212:87–92.CrossRef
11.
go back to reference Kimura M, Harazaki M, Fukuoka T, Asakura I, Sakai H, Kamimaki T, et al. Targeted use of prednisolone with the second IVIG dose for refractory Kawasaki disease. Pediatr Int. 2017; 59(4):397–403.CrossRef Kimura M, Harazaki M, Fukuoka T, Asakura I, Sakai H, Kamimaki T, et al. Targeted use of prednisolone with the second IVIG dose for refractory Kawasaki disease. Pediatr Int. 2017; 59(4):397–403.CrossRef
12.
go back to reference Shao S, Luo C, Zhou K, Hua Y, Wu M, Liu L, et al. Predictive value of serum procalcitonin for both initial and repeated immunoglobulin resistance in Kawasaki disease: a prospective cohort study. Pediatr Rheumatol Online J. 2019; 17(1):78.CrossRef Shao S, Luo C, Zhou K, Hua Y, Wu M, Liu L, et al. Predictive value of serum procalcitonin for both initial and repeated immunoglobulin resistance in Kawasaki disease: a prospective cohort study. Pediatr Rheumatol Online J. 2019; 17(1):78.CrossRef
13.
go back to reference McCrindle BW, Li JS, Minich LL, Colan SD, Atz AM, Takahashi M, et al. Coronary artery involvement in children with Kawasaki disease: risk factors from analysis of serial normalized measurements. Circulation. 2007; 116(2):174–9.CrossRef McCrindle BW, Li JS, Minich LL, Colan SD, Atz AM, Takahashi M, et al. Coronary artery involvement in children with Kawasaki disease: risk factors from analysis of serial normalized measurements. Circulation. 2007; 116(2):174–9.CrossRef
14.
go back to reference Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American Heart Association. Circulation. 2004; 110(17):2747–71.CrossRef Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the committee on rheumatic fever, endocarditis and Kawasaki disease, council on cardiovascular disease in the young, American Heart Association. Circulation. 2004; 110(17):2747–71.CrossRef
15.
go back to reference Chuang CH, Hsiao MH, Chiu CH, Huang YC, Lin TY. Kawasaki disease in infants three months of age or younger. J Microbiol Immunol Infect. 2006; 39(5):387–391.PubMed Chuang CH, Hsiao MH, Chiu CH, Huang YC, Lin TY. Kawasaki disease in infants three months of age or younger. J Microbiol Immunol Infect. 2006; 39(5):387–391.PubMed
16.
go back to reference Jaggi P, Grcic M, Kovalchin J, Wilhelm CM, Yildirim-Toruner C, Texter K. Using the electronic medical record to correlate Kawasaki disease phenotypes with clinical outcomes. J Pediatric Infect Dis Soc. 2018; 7(2):119–23.CrossRef Jaggi P, Grcic M, Kovalchin J, Wilhelm CM, Yildirim-Toruner C, Texter K. Using the electronic medical record to correlate Kawasaki disease phenotypes with clinical outcomes. J Pediatric Infect Dis Soc. 2018; 7(2):119–23.CrossRef
17.
go back to reference Shao S, Yang L, Liu X, Liu L, Wu M, Deng Y, et al. Predictive value of coagulation profiles for both initial and repeated immunoglobulin resistance in Kawasaki disease: A prospective cohort study. Pediatr Allergy Immunol. 2021; 00:1–11. Shao S, Yang L, Liu X, Liu L, Wu M, Deng Y, et al. Predictive value of coagulation profiles for both initial and repeated immunoglobulin resistance in Kawasaki disease: A prospective cohort study. Pediatr Allergy Immunol. 2021; 00:1–11.
18.
go back to reference Liu L, Yin W, Wang R, Sun D, He X, Ding Y. The prognostic role of abnormal liver function in IVIG unresponsiveness in Kawasaki disease: a meta-analysis. Inflamm Res. 2016; 65(2):161–8.CrossRef Liu L, Yin W, Wang R, Sun D, He X, Ding Y. The prognostic role of abnormal liver function in IVIG unresponsiveness in Kawasaki disease: a meta-analysis. Inflamm Res. 2016; 65(2):161–8.CrossRef
19.
go back to reference Seo E, Yu JJ, Jun HO, Shin EJ, Baek JS, Kim YH, et al. Prediction of unresponsiveness to second intravenous immunoglobulin treatment in patients with Kawasaki disease refractory to initial treatment. Korean J Pediatr. 2016; 59(10):408–13.CrossRef Seo E, Yu JJ, Jun HO, Shin EJ, Baek JS, Kim YH, et al. Prediction of unresponsiveness to second intravenous immunoglobulin treatment in patients with Kawasaki disease refractory to initial treatment. Korean J Pediatr. 2016; 59(10):408–13.CrossRef
20.
go back to reference Liu X, Wang L, Zhou K, Shao S, Hua Y, Wu M, et al. Predictive value of C-reactive protein to albumin ratio as a biomarker for initial and repeated intravenous immunoglobulin resistance in a large cohort of Kawasaki disease patients: a prospective cohort study. Pediatr Rheumatol Online J. 2021; 19(1):24.CrossRef Liu X, Wang L, Zhou K, Shao S, Hua Y, Wu M, et al. Predictive value of C-reactive protein to albumin ratio as a biomarker for initial and repeated intravenous immunoglobulin resistance in a large cohort of Kawasaki disease patients: a prospective cohort study. Pediatr Rheumatol Online J. 2021; 19(1):24.CrossRef
21.
go back to reference Taddio A, Rossi ED, Monasta L, Pastore S, Tommasini A, Lepore L, et al. Describing Kawasaki shock syndrome: results from a retrospective study and literature review. Clin Rheumatol. 2017; 36(1):223–28.CrossRef Taddio A, Rossi ED, Monasta L, Pastore S, Tommasini A, Lepore L, et al. Describing Kawasaki shock syndrome: results from a retrospective study and literature review. Clin Rheumatol. 2017; 36(1):223–28.CrossRef
22.
go back to reference Sato YZ, Molkara DP, Daniels LB, Tremoulet AH, Shimizu C, Kanegaye JT, et al. Cardiovascular biomarkers in acute Kawasaki disease. Int J Cardiol. 2013; 164(1):58–63.CrossRef Sato YZ, Molkara DP, Daniels LB, Tremoulet AH, Shimizu C, Kanegaye JT, et al. Cardiovascular biomarkers in acute Kawasaki disease. Int J Cardiol. 2013; 164(1):58–63.CrossRef
23.
go back to reference Nakashima Y, Nanishi E, Yamamura K, Uike K, Terashi E, Hirata Y, et al. Procalcitonin levels predicting the infliximab response of immunoglobulin resistant Kawasaki disease. Cytokine. 2019; 114: 26–31.CrossRef Nakashima Y, Nanishi E, Yamamura K, Uike K, Terashi E, Hirata Y, et al. Procalcitonin levels predicting the infliximab response of immunoglobulin resistant Kawasaki disease. Cytokine. 2019; 114: 26–31.CrossRef
24.
go back to reference Marrani E, Burns JC, Cimaz R. How should we classify Kawasaki disease? Front Immunol. 2018; 9:2974.CrossRef Marrani E, Burns JC, Cimaz R. How should we classify Kawasaki disease? Front Immunol. 2018; 9:2974.CrossRef
25.
go back to reference Wagner NM, Van Aken C, Butschkau A, Bierhansl L, Kellner P, Schleusener V, et al. Procalcitonin impairs endothelial cell function and viability. Anesth Analg. 2017; 124(3):836–45.CrossRef Wagner NM, Van Aken C, Butschkau A, Bierhansl L, Kellner P, Schleusener V, et al. Procalcitonin impairs endothelial cell function and viability. Anesth Analg. 2017; 124(3):836–45.CrossRef
26.
go back to reference Wang Y, Qian SY, Yuan Y, Wang Q, Gao L, Chen X, et al. Do cytokines correlate with refractory Kawasaki disease in children? Clin Chim Acta. 2020; 506: 222–7.CrossRef Wang Y, Qian SY, Yuan Y, Wang Q, Gao L, Chen X, et al. Do cytokines correlate with refractory Kawasaki disease in children? Clin Chim Acta. 2020; 506: 222–7.CrossRef
27.
go back to reference Nakagama Y, Inuzuka R, Hayashi T, Shindo T, Hirata Y, Shimizu N, et al. Fever pattern and C-reactive protein predict response to rescue therapy in Kawasaki disease. Pediatr Int. 2016; 58(3):180–4.CrossRef Nakagama Y, Inuzuka R, Hayashi T, Shindo T, Hirata Y, Shimizu N, et al. Fever pattern and C-reactive protein predict response to rescue therapy in Kawasaki disease. Pediatr Int. 2016; 58(3):180–4.CrossRef
28.
go back to reference Okubo Y, Miura M, Kobayashi T, Morisaki N, Michihata N, Matsui H, et al. The impact of changes in clinical guideline on practice patterns and healthcare utilizations for Kawasaki disease in japan. Front Pediatr. 2020; 8:114.CrossRef Okubo Y, Miura M, Kobayashi T, Morisaki N, Michihata N, Matsui H, et al. The impact of changes in clinical guideline on practice patterns and healthcare utilizations for Kawasaki disease in japan. Front Pediatr. 2020; 8:114.CrossRef
29.
go back to reference Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet. 2012; 379(9826):1613–20.CrossRef Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet. 2012; 379(9826):1613–20.CrossRef
30.
go back to reference Kobayashi T, Kobayashi T, Morikawa A, Ikeda K, Seki M, Shimoyama S, et al. Efficacy of intravenous immunoglobulin combined with prednisolone following resistance to initial intravenous immunoglobulin treatment of acute Kawasaki disease. J Pediatr. 2013; 163(2):521–6.CrossRef Kobayashi T, Kobayashi T, Morikawa A, Ikeda K, Seki M, Shimoyama S, et al. Efficacy of intravenous immunoglobulin combined with prednisolone following resistance to initial intravenous immunoglobulin treatment of acute Kawasaki disease. J Pediatr. 2013; 163(2):521–6.CrossRef
Metadata
Title
Prediction of repeated intravenous immunoglobulin resistance in children with Kawasaki disease
Authors
Yaheng Lu
Tingting Chen
Yizhou Wen
Feifei Si
Xindan Wu
Yanfeng Yang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02876-w

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue