Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Research article

Association between head circumference at two years and second and fifth year cognition

Authors: Beena Koshy, Manikandan Srinivasan, Timiri Palani Murugan, Anuradha Bose, Pamela Christudoss, Venkata Raghava Mohan, Sushil John, Reeba Roshan, Gagandeep Kang

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Head circumference (HC) measurement is routinely not performed in early childhood and there is conflicting information about its utility in literature. The current study analyses the association between HC at two years of age and cognition at two and five years of age.

Methods

A community based birth-cohort recruited between 2010 and 2012 was followed up till five years of age in an urban slum in Vellore, India. Children were recruited at birth after informed parental consent by consecutive sampling using eligibility criteria of healthy new-born, singleton pregnancy and family’s availability in the study area during follow-up. HC measured at two years of age was used as the exposure variable to calculate association with cognition at both two and five years of age. Cognitive domain of Bayley scale of infant development was used at two years of age and Wechsler Preschool Primary Scales of Intelligence at five years.

Results

Of the 251 enrolled children, 138 (55%) were girls and 71 (30%) belonged to lower socioeconomic status. At 2 years, 8.81% of children had HC < − 3SD. Compared to children with HC z-scores ≥ − 2 SD, those with measurements < − 3 SD had a lower cognition scores by − 2.21 [95% CI: − 3.87 - -0.56] at 2 years. Also, children with HC < − 3 SD at two years scored significantly lower scores in cognitive domains of verbal, − 7.35 [95% CI: − 11.78 - -2.92] and performance, − 7.07 [95% CI: − 11.77 - -2.36] intelligence at five years.

Conclusions

This study showed that smaller HC at 2 years of age was negatively associated with cognition at both 2 and 5 years of age. Early childhood HC measurements can be utilised as a cheaper screening tool to identify children at risk in LMIC settings. Further studies can confirm these findings in diverse settings.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Academy of Pediatrics: Bright futures: Prevention and health promotion for infants, children, adolescents, and their families. In: Bright futures. edn. Edited by American Academy of Pediatrics. Elk Grove: American Academy of Pediatrics; 2015. American Academy of Pediatrics: Bright futures: Prevention and health promotion for infants, children, adolescents, and their families. In: Bright futures. edn. Edited by American Academy of Pediatrics. Elk Grove: American Academy of Pediatrics; 2015.
2.
go back to reference Scharf RJ, Rogawski ET, Murray-Kolb LE, Maphula A, Svensen E, Tofail F, et al. Early childhood growth and cognitive outcomes: findings from the MAL-ED study. Matern Child Nutr. 2018;14(3):e12584.CrossRef Scharf RJ, Rogawski ET, Murray-Kolb LE, Maphula A, Svensen E, Tofail F, et al. Early childhood growth and cognitive outcomes: findings from the MAL-ED study. Matern Child Nutr. 2018;14(3):e12584.CrossRef
3.
go back to reference Maiti S, Ali KM, Ghosh D, Paul S. Assessment of head circumference among pre-school children of Midnapore town, West Bengal using WHO (2007) recommended cut-off points. Int J Prev Med. 2012;3(10):742–4.PubMedPubMedCentral Maiti S, Ali KM, Ghosh D, Paul S. Assessment of head circumference among pre-school children of Midnapore town, West Bengal using WHO (2007) recommended cut-off points. Int J Prev Med. 2012;3(10):742–4.PubMedPubMedCentral
4.
go back to reference Sindhu KN, Ramamurthy P, Ramanujam K, Henry A, Bondu JD, John SM, et al. Low head circumference during early childhood and its predictors in a semi-urban settlement of Vellore, Southern India. BMC Pediatr. 2019;19(1):182.CrossRef Sindhu KN, Ramamurthy P, Ramanujam K, Henry A, Bondu JD, John SM, et al. Low head circumference during early childhood and its predictors in a semi-urban settlement of Vellore, Southern India. BMC Pediatr. 2019;19(1):182.CrossRef
5.
go back to reference Wright CM, Emond A. Head growth and neurocognitive outcomes. Pediatrics. 2015;135(6):e1393–8.CrossRef Wright CM, Emond A. Head growth and neurocognitive outcomes. Pediatrics. 2015;135(6):e1393–8.CrossRef
6.
go back to reference Ivanovic DM, Leiva BP, Pérez HT, Olivares MG, Díaz NS, Urrutia MS, et al. Head size and intelligence, learning, nutritional status and brain development. Head, IQ, learning, nutrition and brain. Neuropsychologia. 2004;42(8):1118–31.CrossRef Ivanovic DM, Leiva BP, Pérez HT, Olivares MG, Díaz NS, Urrutia MS, et al. Head size and intelligence, learning, nutritional status and brain development. Head, IQ, learning, nutrition and brain. Neuropsychologia. 2004;42(8):1118–31.CrossRef
7.
8.
go back to reference Zahl SM, Wester K. Routine measurement of head circumference as a tool for detecting intracranial expansion in infants: what is the gain? A nationwide survey. Pediatrics. 2008;121(3):e416–20.CrossRef Zahl SM, Wester K. Routine measurement of head circumference as a tool for detecting intracranial expansion in infants: what is the gain? A nationwide survey. Pediatrics. 2008;121(3):e416–20.CrossRef
9.
go back to reference Treit S, Zhou D, Chudley AE, Andrew G, Rasmussen C, Nikkel SM, et al. Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PLoS One. 2016;11(2):e0150370.CrossRef Treit S, Zhou D, Chudley AE, Andrew G, Rasmussen C, Nikkel SM, et al. Relationships between head circumference, brain volume and cognition in children with prenatal alcohol exposure. PLoS One. 2016;11(2):e0150370.CrossRef
10.
go back to reference Raghuram K, Yang J, Church PT, Cieslak Z, Synnes A, Mukerji A, et al. Head Growth Trajectory and Neurodevelopmental Outcomes in Preterm Neonates. Pediatrics. 2017;140(1):e20170216. Raghuram K, Yang J, Church PT, Cieslak Z, Synnes A, Mukerji A, et al. Head Growth Trajectory and Neurodevelopmental Outcomes in Preterm Neonates. Pediatrics. 2017;140(1):e20170216.
11.
go back to reference Cheong JLY, Hunt RW, Anderson PJ, Howard K, Thompson DK, Wang HX, et al. Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics. 2008;121(6):e1534–40.CrossRef Cheong JLY, Hunt RW, Anderson PJ, Howard K, Thompson DK, Wang HX, et al. Head growth in preterm infants: correlation with magnetic resonance imaging and neurodevelopmental outcome. Pediatrics. 2008;121(6):e1534–40.CrossRef
12.
go back to reference Scharf RJ, Stroustrup A, Conaway MR, DeBoer MD. Growth and development in children born very low birthweight. Arch Dis Child Fetal Neonatal Ed. 2016;101(5):F433–8.CrossRef Scharf RJ, Stroustrup A, Conaway MR, DeBoer MD. Growth and development in children born very low birthweight. Arch Dis Child Fetal Neonatal Ed. 2016;101(5):F433–8.CrossRef
13.
go back to reference Veena SR, Krishnaveni GV, Wills AK, Kurpad AV, Muthayya S, Hill JC, et al. Association of birthweight and head circumference at birth to cognitive performance in 9- to 10-year-old children in South India: prospective birth cohort study. Pediatr Res. 2010;67(4):424–9.CrossRef Veena SR, Krishnaveni GV, Wills AK, Kurpad AV, Muthayya S, Hill JC, et al. Association of birthweight and head circumference at birth to cognitive performance in 9- to 10-year-old children in South India: prospective birth cohort study. Pediatr Res. 2010;67(4):424–9.CrossRef
14.
go back to reference Gale CR, O'Callaghan FJ, Bredow M, Martyn CN. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics. 2006;118(4):1486–92.CrossRef Gale CR, O'Callaghan FJ, Bredow M, Martyn CN. The influence of head growth in fetal life, infancy, and childhood on intelligence at the ages of 4 and 8 years. Pediatrics. 2006;118(4):1486–92.CrossRef
15.
go back to reference Tal G, Cohen A, Habib S, Tirosh E. Decreased head circumference velocity as related to developmental deficit in infancy. Pediatr Neurol. 2012;47(5):341–4.CrossRef Tal G, Cohen A, Habib S, Tirosh E. Decreased head circumference velocity as related to developmental deficit in infancy. Pediatr Neurol. 2012;47(5):341–4.CrossRef
16.
go back to reference Bove I, Miranda T, Campoy C, Uauy R, Napol M. Stunting, overweight and child development impairment go hand in hand as key problems of early infancy: Uruguayan case. Early Hum Dev. 2012;88(9):747–51.CrossRef Bove I, Miranda T, Campoy C, Uauy R, Napol M. Stunting, overweight and child development impairment go hand in hand as key problems of early infancy: Uruguayan case. Early Hum Dev. 2012;88(9):747–51.CrossRef
17.
go back to reference Bartholomeusz HH, Courchesne E, Karns CM. Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics. 2002;33(5):239–41.CrossRef Bartholomeusz HH, Courchesne E, Karns CM. Relationship between head circumference and brain volume in healthy normal toddlers, children, and adults. Neuropediatrics. 2002;33(5):239–41.CrossRef
18.
go back to reference Biesalski HK. The 1,000-day window and cognitive development. World Rev Nutr Diet. 2016;115:1–15.CrossRef Biesalski HK. The 1,000-day window and cognitive development. World Rev Nutr Diet. 2016;115:1–15.CrossRef
19.
go back to reference Georgiadis A, Penny ME. Child undernutrition: opportunities beyond the first 1000 days. Lancet Public Health. 2017;2(9):e399.CrossRef Georgiadis A, Penny ME. Child undernutrition: opportunities beyond the first 1000 days. Lancet Public Health. 2017;2(9):e399.CrossRef
20.
go back to reference MAL-ED Network Investigators: The MAL-ED study: a multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of age in resource-poor environments. Clin Infect Dis. 2014;59 Suppl 4:S193–206. MAL-ED Network Investigators: The MAL-ED study: a multinational and multidisciplinary approach to understand the relationship between enteric pathogens, malnutrition, gut physiology, physical growth, cognitive development, and immune responses in infants and children up to 2 years of age in resource-poor environments. Clin Infect Dis. 2014;59 Suppl 4:S193–206.
21.
go back to reference John SM, Thomas RJ, Kaki S, Sharma SL, Ramanujam K, Raghava MV, et al. Establishment of the MAL-ED birth cohort study site in Vellore, southern India. Clin Infect Dis. 2014;59(Suppl 4):S295–9.CrossRef John SM, Thomas RJ, Kaki S, Sharma SL, Ramanujam K, Raghava MV, et al. Establishment of the MAL-ED birth cohort study site in Vellore, southern India. Clin Infect Dis. 2014;59(Suppl 4):S295–9.CrossRef
22.
go back to reference World Health Organization. WHO child growth standards: methods and development: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age. Geneva, Switzerland: World Health Organization; 2006. World Health Organization. WHO child growth standards: methods and development: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age. Geneva, Switzerland: World Health Organization; 2006.
24.
go back to reference Bayley N. Bayley scales of infant and toddler development III. San Antonio, TX: Psychological Corp; 2005. Bayley N. Bayley scales of infant and toddler development III. San Antonio, TX: Psychological Corp; 2005.
25.
go back to reference Murray-Kolb LE, Rasmussen ZA, Scharf RJ, Rasheed MA, Svensen E, Seidman JC, et al. The MAL-ED cohort study: methods and lessons learned when assessing early child development and caregiving mediators in infants and young children in 8 low- and middle-income countries. Clin Infect Dis. 2014;59(Suppl 4):S261–72.CrossRef Murray-Kolb LE, Rasmussen ZA, Scharf RJ, Rasheed MA, Svensen E, Seidman JC, et al. The MAL-ED cohort study: methods and lessons learned when assessing early child development and caregiving mediators in infants and young children in 8 low- and middle-income countries. Clin Infect Dis. 2014;59(Suppl 4):S261–72.CrossRef
26.
go back to reference Wechsler D. The Wechsler preschool and primary scale of intelligence, third edition (WPPSI-III). San Antonio, TX: The Psychological Corporation; 2002. Wechsler D. The Wechsler preschool and primary scale of intelligence, third edition (WPPSI-III). San Antonio, TX: The Psychological Corporation; 2002.
28.
go back to reference Raven J, Raven JC, Court JH. Manual for Raven's progressive matrices and vocabulary scales. San Antonio, TX: Harcourt Assessment; 2003. Raven J, Raven JC, Court JH. Manual for Raven's progressive matrices and vocabulary scales. San Antonio, TX: Harcourt Assessment; 2003.
29.
go back to reference Cook JD, Flowers CH, Skikne BS. The quantitative assessment of body iron. Blood. 2003;101(9):3359–64.CrossRef Cook JD, Flowers CH, Skikne BS. The quantitative assessment of body iron. Blood. 2003;101(9):3359–64.CrossRef
30.
go back to reference Koshy B, Srinivasan M, Zachariah SM, Karthikeyan AS, Roshan R, Bose A, et al. Body iron and lead status in early childhood and its effects on development and cognition: a longitudinal study from urban Vellore. Public Health Nutr. 2020;23(11):1896–1906. Koshy B, Srinivasan M, Zachariah SM, Karthikeyan AS, Roshan R, Bose A, et al. Body iron and lead status in early childhood and its effects on development and cognition: a longitudinal study from urban Vellore. Public Health Nutr. 2020;23(11):1896–1906.
31.
go back to reference McCormick BJJ, Richard SA, Caulfield LE, Pendergast LL, Seidman JC, Koshy B, et al. Early life child micronutrient status, maternal reasoning, and a nurturing household environment have persistent influences on child cognitive development at age 5 years: results from MAL-ED. J Nutr. 2019;149(8):1460–9.CrossRef McCormick BJJ, Richard SA, Caulfield LE, Pendergast LL, Seidman JC, Koshy B, et al. Early life child micronutrient status, maternal reasoning, and a nurturing household environment have persistent influences on child cognitive development at age 5 years: results from MAL-ED. J Nutr. 2019;149(8):1460–9.CrossRef
32.
go back to reference Khadilkar VV, Khadilkar AV, Choudhury P, Agarwal KN, Ugra D, Shah NK. IAP growth monitoring guidelines for children from birth to 18 years. Indian Pediatr. 2007;44(3):187–97.PubMed Khadilkar VV, Khadilkar AV, Choudhury P, Agarwal KN, Ugra D, Shah NK. IAP growth monitoring guidelines for children from birth to 18 years. Indian Pediatr. 2007;44(3):187–97.PubMed
33.
go back to reference Kuban KCK, Allred EN, O'Shea TM, Paneth N, Westra S, Miller C, et al. Developmental correlates of head circumference at birth and two years in a cohort of extremely low gestational age newborns. J Pediatr. 2009;155(3):344–9 e393.CrossRef Kuban KCK, Allred EN, O'Shea TM, Paneth N, Westra S, Miller C, et al. Developmental correlates of head circumference at birth and two years in a cohort of extremely low gestational age newborns. J Pediatr. 2009;155(3):344–9 e393.CrossRef
34.
go back to reference Neubauer V, Griesmaier E, Pehböck-Walser N, Pupp-Peglow U, Kiechl-Kohlendorfer U. Poor postnatal head growth in very preterm infants is associated with impaired neurodevelopment outcome. Acta Paediatr. 2013;102(9):883–8.CrossRef Neubauer V, Griesmaier E, Pehböck-Walser N, Pupp-Peglow U, Kiechl-Kohlendorfer U. Poor postnatal head growth in very preterm infants is associated with impaired neurodevelopment outcome. Acta Paediatr. 2013;102(9):883–8.CrossRef
35.
go back to reference Harris SR. Measuring head circumference: update on infant microcephaly. Canadian family physician Medecin de famille canadien. 2015;61(8):680–4.PubMedPubMedCentral Harris SR. Measuring head circumference: update on infant microcephaly. Canadian family physician Medecin de famille canadien. 2015;61(8):680–4.PubMedPubMedCentral
36.
go back to reference Kliegman R. Nelson textbook of Pediatrics. Edition 21. Philadelphia, PA: Elsevier; 2020. Kliegman R. Nelson textbook of Pediatrics. Edition 21. Philadelphia, PA: Elsevier; 2020.
37.
go back to reference Mohan VR, Sharma S, Ramanujam K, Babji S, Koshy B, Bondu JD, et al. Effects of elevated blood lead levels in preschool children in urban Vellore. Indian Pediatr. 2014;51(8):621–5.CrossRef Mohan VR, Sharma S, Ramanujam K, Babji S, Koshy B, Bondu JD, et al. Effects of elevated blood lead levels in preschool children in urban Vellore. Indian Pediatr. 2014;51(8):621–5.CrossRef
Metadata
Title
Association between head circumference at two years and second and fifth year cognition
Authors
Beena Koshy
Manikandan Srinivasan
Timiri Palani Murugan
Anuradha Bose
Pamela Christudoss
Venkata Raghava Mohan
Sushil John
Reeba Roshan
Gagandeep Kang
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02543-0

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue