Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Metabolic Acidosis | Case report

Severe clinical manifestation of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency associated with two novel mutations: a case report

Authors: Hao Liu, Jing-kun Miao, Chao-wen Yu, Ke-xing Wan, Juan Zhang, Zhao-jian Yuan, Jing Yang, Dong-juan Wang, Yan Zeng, Lin Zou

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHS) deficiency is an autosomal recessive inborn error of metabolism, which will give rise to failure of ketogenesis in liver during illness or fasting. It is a very rare disease with only a few patients reported worldwide, most of which had a good prognosis after proper therapies.

Case presentation

We report a 9-month-old boy with mHS deficiency presenting with unusually severe and persistent acidosis after diarrhea and reduced oral food intake. The metabolic acidosis persisted even after supplementation with sugar and alkaline solution. Blood purification and assisted respiration alleviated symptoms, but a second onset induced by respiratory infection several days later led to multiple organ failure and death. Urine organic acid analysis during the acute episode revealed a complex pattern of ketogenic dicarboxylic and 3-hydroxydicarboxylic aciduria with prominent elevation of glutaric acid and adipic acid, which seem to be specific to mHS deficiency. Plasma acylcarnitine analysis revealed elevated 3-hydroxybutyrylcarnitine and acetylcarnitine. This is the first report of elevated 3-hydroxybutyrylcarnitine in mHS deficiency. Whole exome sequencing revealed a novel compound heterozygous mutation in HMGCS2 (c.100C > T and c.1465delA).

Conclusion

This severe case suggests the need for patients with mHS deficiency to avoid recurrent illness because it can induce severe metabolic crisis, possibly leading to death. Such patients may also require special treatment, such as blood purification. Urine organic acid profile during the acute episode may give a hint to the disease.
Literature
2.
go back to reference Quant PA. The role of mitochondrial HMG-CoA synthase in regulation of ketogenesis. Essays Biochem. 1994;28:13–25.PubMed Quant PA. The role of mitochondrial HMG-CoA synthase in regulation of ketogenesis. Essays Biochem. 1994;28:13–25.PubMed
3.
go back to reference Conboy E, Vairo F, Schultz M, et al. Mitochondrial 3-Hydroxy-3-Methylglutaryl-CoA synthase deficiency: unique presenting laboratory values and a review of biochemical and clinical features. JIMD Rep. 2018;40:63–9.CrossRefPubMed Conboy E, Vairo F, Schultz M, et al. Mitochondrial 3-Hydroxy-3-Methylglutaryl-CoA synthase deficiency: unique presenting laboratory values and a review of biochemical and clinical features. JIMD Rep. 2018;40:63–9.CrossRefPubMed
4.
go back to reference Ma D, Yu D. Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase deficiency: a case report and literature review. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(11):930–3.PubMed Ma D, Yu D. Mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase deficiency: a case report and literature review. Zhongguo Dang Dai Er Ke Za Zhi. 2018;20(11):930–3.PubMed
5.
go back to reference Thompson GN, Hsu BY, Pitt JJ, et al. Fasting hypoketotic coma in a child with deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. N Engl J Med. 1997;337(17):1203–7.CrossRefPubMed Thompson GN, Hsu BY, Pitt JJ, et al. Fasting hypoketotic coma in a child with deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase. N Engl J Med. 1997;337(17):1203–7.CrossRefPubMed
6.
go back to reference Bouchard L, Robert MF, Vinarov D, et al. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: clinical course and description of causal mutations in two patients. Pediatr Res. 2001;49(3):326–31.CrossRefPubMed Bouchard L, Robert MF, Vinarov D, et al. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: clinical course and description of causal mutations in two patients. Pediatr Res. 2001;49(3):326–31.CrossRefPubMed
7.
go back to reference Zschocke J, Penzien JM, Bielen R, et al. The diagnosis of mitochondrial HMG-CoA synthase deficiency. J Pediatr. 2002;140(6):778–80.CrossRefPubMed Zschocke J, Penzien JM, Bielen R, et al. The diagnosis of mitochondrial HMG-CoA synthase deficiency. J Pediatr. 2002;140(6):778–80.CrossRefPubMed
8.
go back to reference Wolf NI, Rahman S, Clayton PT, et al. Mitochondrial HMG-CoA synthase deficiency: identification of two further patients carrying two novel mutations. Eur J Pediatr. 2003;162(4):279–80.PubMed Wolf NI, Rahman S, Clayton PT, et al. Mitochondrial HMG-CoA synthase deficiency: identification of two further patients carrying two novel mutations. Eur J Pediatr. 2003;162(4):279–80.PubMed
9.
go back to reference Aledo R, Mir C, Dalton RN, et al. Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency. J Inherit Metab Dis. 2006;29(1):207–11.CrossRefPubMed Aledo R, Mir C, Dalton RN, et al. Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency. J Inherit Metab Dis. 2006;29(1):207–11.CrossRefPubMed
10.
go back to reference Pitt JJ, Peters H, Boneh A, et al. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: urinary organic acid profiles and expanded spectrum of mutations. J Inherit Metab Dis. 2015;38(3):459–66.CrossRefPubMed Pitt JJ, Peters H, Boneh A, et al. Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: urinary organic acid profiles and expanded spectrum of mutations. J Inherit Metab Dis. 2015;38(3):459–66.CrossRefPubMed
11.
go back to reference Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.CrossRefPubMedPubMedCentral
12.
go back to reference Morris AA, Lascelles CV, Olpin SE, et al. Hepatic mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme a synthase deficiency. Pediatr Res. 1998;44(3):392-6.CrossRefPubMed Morris AA, Lascelles CV, Olpin SE, et al. Hepatic mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme a synthase deficiency. Pediatr Res. 1998;44(3):392-6.CrossRefPubMed
13.
go back to reference Aledo R, Zschocke J, et al. Genetic basis of mitochondrial HMG-CoA synthase deficiency. Hum Genet. 2001;109(1):19-23.CrossRefPubMed Aledo R, Zschocke J, et al. Genetic basis of mitochondrial HMG-CoA synthase deficiency. Hum Genet. 2001;109(1):19-23.CrossRefPubMed
14.
go back to reference Ramos M, Menao S, Arnedo M, et al. New case of mitochondrial HMG-CoA synthase deficiency. Functional analysis of eight mutations. Eur J Med Genet. 2013;56(8):411-5.CrossRefPubMed Ramos M, Menao S, Arnedo M, et al. New case of mitochondrial HMG-CoA synthase deficiency. Functional analysis of eight mutations. Eur J Med Genet. 2013;56(8):411-5.CrossRefPubMed
15.
go back to reference Goodman SI, Frerman FE. Glutaric acidaemia type II (multiple acyl-CoA dehydrogenation deficiency). J Inherit Metab Dis. 1984;7:33–7. Goodman SI, Frerman FE. Glutaric acidaemia type II (multiple acyl-CoA dehydrogenation deficiency). J Inherit Metab Dis. 1984;7:33–7.
16.
go back to reference Tserng KY, Jin SJ, Kerr DS, et al. Urinary 3-hydroxydicarboxylic acids in pathophysiology of metabolic disorders with dicarboxylic aciduria. Metabolism. 1991;40(7):676–82.CrossRefPubMed Tserng KY, Jin SJ, Kerr DS, et al. Urinary 3-hydroxydicarboxylic acids in pathophysiology of metabolic disorders with dicarboxylic aciduria. Metabolism. 1991;40(7):676–82.CrossRefPubMed
17.
go back to reference Kapoor RR, James C, Flanagan SE. 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab. 2009;94(7):2221–5.CrossRef Kapoor RR, James C, Flanagan SE. 3-Hydroxyacyl-coenzyme A dehydrogenase deficiency and hyperinsulinemic hypoglycemia: characterization of a novel mutation and severe dietary protein sensitivity. J Clin Endocrinol Metab. 2009;94(7):2221–5.CrossRef
18.
go back to reference Soeters MR, Serlie MJ, Sauerwein HP, et al. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism. 2012;61(7):966–73.CrossRefPubMed Soeters MR, Serlie MJ, Sauerwein HP, et al. Characterization of D-3-hydroxybutyrylcarnitine (ketocarnitine): an identified ketosis-induced metabolite. Metabolism. 2012;61(7):966–73.CrossRefPubMed
Metadata
Title
Severe clinical manifestation of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency associated with two novel mutations: a case report
Authors
Hao Liu
Jing-kun Miao
Chao-wen Yu
Ke-xing Wan
Juan Zhang
Zhao-jian Yuan
Jing Yang
Dong-juan Wang
Yan Zeng
Lin Zou
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1747-5

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue