Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Alkalosis | Case report

Digenetic inheritance of SLC12A3 and CLCNKB genes in a Chinese girl with Gitelman syndrome

Authors: Yuanmei Kong, Ke Xu, Ke Yuan, Jianfang Zhu, Weiyue Gu, Li Liang, Chunlin Wang

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Gitelman syndrome (GS) is an autosomal recessive disorder and mild variant of classic Bartter syndrome. The latter is caused by defects in the genes CLCNKB and/or CLCNKA (chloride voltage-gated channel Ka and Kb). Patients with GS usually have loss-of-function mutations in SLC12A3. No patient has been reported with compound heterozygous mutations in these genes. We report a girl with GS with a paternally inherited heterozygous mutation in SLC12A3, and maternally inherited heterozygous variants in both CLCNKB and CLCNKA.

Case presentation

In this report, we reported a female patient (8 y and 10 mo) who had growth retardation (111.8 cm, − 1.62 standard deviation height for age) and normal blood pressure, with persistent hypokalemia, hypomagnesemia, hypocalciuria, hypochloremic alkalosis, and elevated levels of plasma renin and aldosterone. Her younger brother, father, and paternal grandmother all had histories of mild low levels of plasma potassium (3.0–3.5 mmol/L), which were rectified by potassium-rich foods. The genomic DNA of the patient, younger brother, parents, and grandparents were screened for gene variations and pedigree analysis using trio whole exome sequencing (WES). The candidate variants were validated by Sanger sequencing. Protein-protein interaction analysis utilized the following databases: Biogrid, MINT, HPRD, STRING, IntAct, iRefIndex, and ppiTrim. The trio WES screening showed that the patient has paternally inherited SLC12A3 p.N359K, and maternally inherited CLCNKB p.L94I. The paternal grandmother and younger brother are both carriers of SLC12A3 p.N359K. According to the STRING database, SLC12A3 and CLCNKB proteins may interact or coexpress with proteins associated with GS.

Conclusions

Based on clinical phenotypes, genetic evidence of the pedigree, and previous reported studies, this case of GS indicates a digenetic inheritance of SLC12A3 and CLCNKB that resulted in renal tubular dysfunction perhaps, due to a genetic double-hit mechanism. The putative pathogenicity of the CLCNKB p.L94I variant requires confirmation.
Literature
1.
go back to reference Glaudemans B, Yntema HG, San-Cristobal P, Schoots J, Pfundt R, Kamsteeg EJ, et al. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome. Eur J Hum Genet. 2012;20(3):263–70.CrossRef Glaudemans B, Yntema HG, San-Cristobal P, Schoots J, Pfundt R, Kamsteeg EJ, et al. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome. Eur J Hum Genet. 2012;20(3):263–70.CrossRef
2.
go back to reference Mastroianni N, Bettinelli A, Bianchetti M, Colussi G, De Fusco M, Sereni F, et al. Novel molecular variants of the Na-cl cotransporter gene are responsible for Gitelman syndrome. Am J Hum Genet. 1996;59(5):1019–26.PubMedPubMedCentral Mastroianni N, Bettinelli A, Bianchetti M, Colussi G, De Fusco M, Sereni F, et al. Novel molecular variants of the Na-cl cotransporter gene are responsible for Gitelman syndrome. Am J Hum Genet. 1996;59(5):1019–26.PubMedPubMedCentral
3.
go back to reference Konrad M, Vollmer M, Lemmink HH, Van den Heuvel LP, Jeck N, Vargas-Poussou R, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol. 2000;11(8):1449–59.PubMed Konrad M, Vollmer M, Lemmink HH, Van den Heuvel LP, Jeck N, Vargas-Poussou R, et al. Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J Am Soc Nephrol. 2000;11(8):1449–59.PubMed
4.
go back to reference Tavira B, Gomez J, Santos F, Gil H, Alvarez V, Coto E. A labor- and cost-effective non-optical semiconductor (ion torrent) next-generation sequencing of the SLC12A3 and CLCNKA/B genes in Gitelman's syndrome patients. J Hum Genet. 2014;59(7):376–80.CrossRef Tavira B, Gomez J, Santos F, Gil H, Alvarez V, Coto E. A labor- and cost-effective non-optical semiconductor (ion torrent) next-generation sequencing of the SLC12A3 and CLCNKA/B genes in Gitelman's syndrome patients. J Hum Genet. 2014;59(7):376–80.CrossRef
5.
go back to reference Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, et al. A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes. Kidney Int. 2003;63(1):24–32.CrossRef Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, et al. A novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes. Kidney Int. 2003;63(1):24–32.CrossRef
6.
go back to reference Cheng NL, Kao MC, Hsu YD, Lin SH. Novel thiazide-sensitive Na-cl cotransporter mutation in a Chinese patient with Gitelman's syndrome presenting as hypokalaemic paralysis. Nephrol Dial Transplant. 2003;18(5):1005–8.CrossRef Cheng NL, Kao MC, Hsu YD, Lin SH. Novel thiazide-sensitive Na-cl cotransporter mutation in a Chinese patient with Gitelman's syndrome presenting as hypokalaemic paralysis. Nephrol Dial Transplant. 2003;18(5):1005–8.CrossRef
7.
go back to reference Tajima T, Kobayashi Y, Abe S, Takahashi M, Konno M, Nakae J, et al. Two novel mutations of thiazide-sensitive Na-cl cotrans porter (TSC) gene in two sporadic Japanese patients with Gitelman syndrome. Endocr J. 2002;49(1):91–6.CrossRef Tajima T, Kobayashi Y, Abe S, Takahashi M, Konno M, Nakae J, et al. Two novel mutations of thiazide-sensitive Na-cl cotrans porter (TSC) gene in two sporadic Japanese patients with Gitelman syndrome. Endocr J. 2002;49(1):91–6.CrossRef
8.
go back to reference Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB. Gitelman's syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 2001;59(2):710–7.CrossRef Cruz DN, Shaer AJ, Bia MJ, Lifton RP, Simon DB. Gitelman's syndrome revisited: an evaluation of symptoms and health-related quality of life. Kidney Int. 2001;59(2):710–7.CrossRef
9.
go back to reference Lin SH, Cheng NL, Hsu YJ, Halperin ML. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis. 2004;43(2):304–12.CrossRef Lin SH, Cheng NL, Hsu YJ, Halperin ML. Intrafamilial phenotype variability in patients with Gitelman syndrome having the same mutations in their thiazide-sensitive sodium/chloride cotransporter. Am J Kidney Dis. 2004;43(2):304–12.CrossRef
10.
go back to reference Qin L, Shao L, Ren H, Wang W, Pan X, Zhang W. Identification of five novel variants in the thiazide-sensitive NaCl co-transporter gene in Chinese patients with Gitelman syndrome. Nephrology (Carlton). 2009;14(1):52–8.CrossRef Qin L, Shao L, Ren H, Wang W, Pan X, Zhang W. Identification of five novel variants in the thiazide-sensitive NaCl co-transporter gene in Chinese patients with Gitelman syndrome. Nephrology (Carlton). 2009;14(1):52–8.CrossRef
11.
go back to reference Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, et al. Gitelman syndrome: consensus and guidance from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2017;91(1):24–33.CrossRef Blanchard A, Bockenhauer D, Bolignano D, Calò LA, Cosyns E, Devuyst O, et al. Gitelman syndrome: consensus and guidance from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2017;91(1):24–33.CrossRef
12.
go back to reference Verhave JC, Bech AP, Wetzels JF, Nijenhuis T. Hepatocyte nuclear factor 1beta-associated kidney disease: more than renal cysts and diabetes [J]. J Am Soc Nephrol. 2016;27(2):345–53.CrossRef Verhave JC, Bech AP, Wetzels JF, Nijenhuis T. Hepatocyte nuclear factor 1beta-associated kidney disease: more than renal cysts and diabetes [J]. J Am Soc Nephrol. 2016;27(2):345–53.CrossRef
13.
go back to reference Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, et al. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol. 2011;22(4):693–703.CrossRef Vargas-Poussou R, Dahan K, Kahila D, Venisse A, Riveira-Munoz E, Debaix H, et al. Spectrum of mutations in Gitelman syndrome. J Am Soc Nephrol. 2011;22(4):693–703.CrossRef
14.
go back to reference Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res. 2000;48(6):754–8.CrossRef Jeck N, Konrad M, Peters M, Weber S, Bonzel KE, Seyberth HW. Mutations in the chloride channel gene, CLCNKB, leading to a mixed Bartter-Gitelman phenotype. Pediatr Res. 2000;48(6):754–8.CrossRef
15.
go back to reference Schaffer AA. Digenic inheritance in medical genetics. J Med Genet. 2013;50(10):641–52.CrossRef Schaffer AA. Digenic inheritance in medical genetics. J Med Genet. 2013;50(10):641–52.CrossRef
16.
go back to reference Fukuyama S, Hiramatsu M, Akagi M, Higa M, Ohta T. Novel mutations of the chloride channel kb gene in two Japanese patients clinically diagnosed as Bartter syndrome with hypocalciuria. J Clin Endocrinol Metab. 2004;89(11):5847–50.CrossRef Fukuyama S, Hiramatsu M, Akagi M, Higa M, Ohta T. Novel mutations of the chloride channel kb gene in two Japanese patients clinically diagnosed as Bartter syndrome with hypocalciuria. J Clin Endocrinol Metab. 2004;89(11):5847–50.CrossRef
Metadata
Title
Digenetic inheritance of SLC12A3 and CLCNKB genes in a Chinese girl with Gitelman syndrome
Authors
Yuanmei Kong
Ke Xu
Ke Yuan
Jianfang Zhu
Weiyue Gu
Li Liang
Chunlin Wang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1498-3

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue