Skip to main content
Top
Published in: BMC Pediatrics 1/2019

Open Access 01-12-2019 | Insulins | Research article

Endocrine and metabolic complications in children and adolescents with Sickle Cell Disease: an Italian cohort study

Authors: V. Mandese, E. Bigi, P. Bruzzi, G. Palazzi, B. Predieri, L. Lucaccioni, M. Cellini, L. Iughetti

Published in: BMC Pediatrics | Issue 1/2019

Login to get access

Abstract

Background

Children with Sickle Cell Disease (SCD) show endocrine complications and metabolic alterations. The physiopathology of these conditions is not completely understood: iron overload due to chronic transfusions, ischemic damage, and inflammatory state related to vaso-occlusive crises may be involved. Aims of this study were to evaluate the growth pattern, endocrine complications, and metabolic alterations and to detect the relationship between these conditions and the SCD severity in affected children and adolescents.

Methods

Fifty-two children and adolescents with SCD [38 homozygous sickle hemoglobin (HbSS) and 14 heterozygous sickle hemoglobin (HbSC); age range 3–18 years] were recruited. Anthropometric [height, body mass index (BMI), arm span, sitting height, target height (TH), and pubertal status] and laboratory [blood cell counts, hemolysis indices, metabolic and nutritional status indices and hormonal blood levels] data were evaluated. The SCD severity was defined according to hematological and clinical parameters.

Results

Height-SDS adjusted for TH and BMI-SDS were significantly higher in HbSC children than in HbSS ones. Forty-eight out of 52 patients (92%) had at least one metabolic and/or endocrine alteration: insufficiency/deficiency of vitamin D (84.7%), insulin resistance (11.5%), growth hormone deficiency (3.8%), subclinical hypothyroidism (3.8%), and hypogonadism (1.9%). Levels of vitamin D were significantly and negatively correlated with clinical indicators of the SCD severity. Subjects with HbSS genotype show significant lower levels of both insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein 3 than children with HbSC. In the study population IGF-1 values were significantly and positively correlated with Hb and negatively with lactate dehydrogenase.

Conclusions

Metabolic alterations and endocrine complications are very common in children and adolescents with SCD. A regular follow-up is necessary to identify subjects at risk for complications to precociously start an appropriate treatment and to improve the quality of life of SCD patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330:1639–44.CrossRef Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330:1639–44.CrossRef
2.
go back to reference Panepinto JA, O'Mahar KM, DeBaun MR, Loberiza FR, Scott JP. Health-related quality of life in children with sickle cell disease: child and parent perception. Br J Haematol. 2005;130:437–44.CrossRef Panepinto JA, O'Mahar KM, DeBaun MR, Loberiza FR, Scott JP. Health-related quality of life in children with sickle cell disease: child and parent perception. Br J Haematol. 2005;130:437–44.CrossRef
4.
go back to reference Lodi M, Bigi E, Palazzi G, Vecchi L, Morandi R, Setti M, et al. Universal screening program in pregnant women and newborns at-risk for sickle cell disease: first report from northern Italy. Hemoglobin. 2017;41:230–3.CrossRef Lodi M, Bigi E, Palazzi G, Vecchi L, Morandi R, Setti M, et al. Universal screening program in pregnant women and newborns at-risk for sickle cell disease: first report from northern Italy. Hemoglobin. 2017;41:230–3.CrossRef
5.
go back to reference Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved survival of children and adolescents with sickle cell disease. Blood. 2010;115:3447–52.CrossRef Quinn CT, Rogers ZR, McCavit TL, Buchanan GR. Improved survival of children and adolescents with sickle cell disease. Blood. 2010;115:3447–52.CrossRef
6.
go back to reference Lobo CL, Ballas SK, Domingos AC, Moura PG, do Nascimento EM, Cardoso GP, et al. Newborn screening program for hemoglobinopathies in Rio de Janeiro, Brazil. Pediatr Blood Cancer. 2014;61:34–9.CrossRef Lobo CL, Ballas SK, Domingos AC, Moura PG, do Nascimento EM, Cardoso GP, et al. Newborn screening program for hemoglobinopathies in Rio de Janeiro, Brazil. Pediatr Blood Cancer. 2014;61:34–9.CrossRef
7.
go back to reference Iughetti L, Bigi E, Venturelli D. Novel insights in the management of sickle cell disease in childhood. World J Clin Pediatr. 2016;5:25–34.CrossRef Iughetti L, Bigi E, Venturelli D. Novel insights in the management of sickle cell disease in childhood. World J Clin Pediatr. 2016;5:25–34.CrossRef
8.
go back to reference Barden EM, Kawchak DA, Ohene-Frempong K, Stallings VA, Zemel BS. Body composition in children with sickle cell disease. Am J Clin Nutr. 2002;76:218–25.CrossRef Barden EM, Kawchak DA, Ohene-Frempong K, Stallings VA, Zemel BS. Body composition in children with sickle cell disease. Am J Clin Nutr. 2002;76:218–25.CrossRef
9.
go back to reference Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376:2018–31.CrossRef Rees DC, Williams TN, Gladwin MT. Sickle-cell disease. Lancet. 2010;376:2018–31.CrossRef
10.
go back to reference Smiley D, Dagogo-Jack S, Umpierrez G. Therapy insight: metabolic and endocrine disorders in sickle cell disease. Nat Clin Pract Endocrinol Metab. 2008;4:102–9.CrossRef Smiley D, Dagogo-Jack S, Umpierrez G. Therapy insight: metabolic and endocrine disorders in sickle cell disease. Nat Clin Pract Endocrinol Metab. 2008;4:102–9.CrossRef
11.
go back to reference el-Hazmi MA, Bahakim HM, al-Fawaz I. Endocrine functions in sickle cell anaemia patients. J Trop Pediatr. 1992;38:307–13.CrossRef el-Hazmi MA, Bahakim HM, al-Fawaz I. Endocrine functions in sickle cell anaemia patients. J Trop Pediatr. 1992;38:307–13.CrossRef
12.
go back to reference Hagag AA, El-Farargy MS, Elrefaey S, Abo El-enein AM. Study of gonadal hormones in Egyptian female children with sickle cell anemia in correlation with iron overload: single center study. Hematol Oncol Stem Cell Ther. 2016;9:1–7.CrossRef Hagag AA, El-Farargy MS, Elrefaey S, Abo El-enein AM. Study of gonadal hormones in Egyptian female children with sickle cell anemia in correlation with iron overload: single center study. Hematol Oncol Stem Cell Ther. 2016;9:1–7.CrossRef
13.
go back to reference Hankins JS, Ware RE, Rogers ZR, Wynn LW, Lane PA, Scott JP, et al. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood. 2005;106:2269–75.CrossRef Hankins JS, Ware RE, Rogers ZR, Wynn LW, Lane PA, Scott JP, et al. Long-term hydroxyurea therapy for infants with sickle cell anemia: the HUSOFT extension study. Blood. 2005;106:2269–75.CrossRef
15.
go back to reference Tanner JM, Goldstein H, Whitehouse RH. Standards for children’s height at ages 2–9 years allowing for height of parents. Arch Dis Child. 1970;47:755–62.CrossRef Tanner JM, Goldstein H, Whitehouse RH. Standards for children’s height at ages 2–9 years allowing for height of parents. Arch Dis Child. 1970;47:755–62.CrossRef
16.
go back to reference Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44:291–3.CrossRef Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44:291–3.CrossRef
17.
go back to reference Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005;115:500–3.CrossRef Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005;115:500–3.CrossRef
18.
go back to reference Kurtoğlu S, Hatipoğlu N, Mazıcıoğlu M, Kendirici M, Keskin M, Kondolot M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2:100–6.CrossRef Kurtoğlu S, Hatipoğlu N, Mazıcıoğlu M, Kendirici M, Keskin M, Kondolot M. Insulin resistance in obese children and adolescents: HOMA-IR cut-off levels in the prepubertal and pubertal periods. J Clin Res Pediatr Endocrinol. 2010;2:100–6.CrossRef
19.
go back to reference Iughetti L, Predieri B, Bruzzi P, Predieri F, Vellani G, Madeo SF, et al. Ten-year longitudinal study of thyroid function in children with Down's syndrome. Horm Res Paediatr. 2014;82:113–21.CrossRef Iughetti L, Predieri B, Bruzzi P, Predieri F, Vellani G, Madeo SF, et al. Ten-year longitudinal study of thyroid function in children with Down's syndrome. Horm Res Paediatr. 2014;82:113–21.CrossRef
20.
go back to reference Grimberg A, DiVall SA, Polychronakos C, Allen DB, Cohen LE, Quintos JB, et al. Drug and therapeutics committee and ethics Committee of the Pediatric Endocrine Society. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-1 deficiency. Horm Res Paediatr. 2016;86:361–97.CrossRef Grimberg A, DiVall SA, Polychronakos C, Allen DB, Cohen LE, Quintos JB, et al. Drug and therapeutics committee and ethics Committee of the Pediatric Endocrine Society. Guidelines for growth hormone and insulin-like growth factor-I treatment in children and adolescents: growth hormone deficiency, idiopathic short stature, and primary insulin-like growth factor-1 deficiency. Horm Res Paediatr. 2016;86:361–97.CrossRef
21.
go back to reference Brook C, Clayton P, Brown R. Brook's clinical pediatric endocrinology. 6th edition. Oxford: Wiley-Blackwell; 2009. Brook C, Clayton P, Brown R. Brook's clinical pediatric endocrinology. 6th edition. Oxford: Wiley-Blackwell; 2009.
22.
go back to reference Özen S, Ünal S, Erçetin N, Taşdelen B. Frequency and risk factors of endocrine complications in Turkish children and adolescents with sickle cell Anemia. Turk J Hematol. 2013;30:25–31.CrossRef Özen S, Ünal S, Erçetin N, Taşdelen B. Frequency and risk factors of endocrine complications in Turkish children and adolescents with sickle cell Anemia. Turk J Hematol. 2013;30:25–31.CrossRef
23.
go back to reference Al-Saqladi AW, Cipolotti R, Fijnvandraat K, Brabin BJ. Growth and nutritional status of children with homozygous sickle cell disease. Ann Trop Paediatr. 2008;28:165–89.CrossRef Al-Saqladi AW, Cipolotti R, Fijnvandraat K, Brabin BJ. Growth and nutritional status of children with homozygous sickle cell disease. Ann Trop Paediatr. 2008;28:165–89.CrossRef
24.
go back to reference Zemel BS, Kawchak DA, Ohene-Frempong K, Schall JI, Stallings VA. Effects of delayed pubertal development, nutritional status, and disease severity on longitudinal patterns of growth failure in children with sickle cell disease. Pediatr Res. 2007;61:607–13.CrossRef Zemel BS, Kawchak DA, Ohene-Frempong K, Schall JI, Stallings VA. Effects of delayed pubertal development, nutritional status, and disease severity on longitudinal patterns of growth failure in children with sickle cell disease. Pediatr Res. 2007;61:607–13.CrossRef
25.
go back to reference Singhal A, Morris J, Thomas P, Dover G, Higgs D, Serjeant GR. Factors affecting prepubertal growth in homozygous sickle cell disease. Arch Dis Child. 1996;6:502–6.CrossRef Singhal A, Morris J, Thomas P, Dover G, Higgs D, Serjeant GR. Factors affecting prepubertal growth in homozygous sickle cell disease. Arch Dis Child. 1996;6:502–6.CrossRef
26.
go back to reference Soliman A, el Zalabany M, Amer M, Ansari BM. Growth and pubertal development in transfusion-dependent children and adolescents with thalassaemia major and sickle cell disease: a comparative study. J Trop Pediatr. 1999;45:23–30.CrossRef Soliman A, el Zalabany M, Amer M, Ansari BM. Growth and pubertal development in transfusion-dependent children and adolescents with thalassaemia major and sickle cell disease: a comparative study. J Trop Pediatr. 1999;45:23–30.CrossRef
27.
go back to reference Thomas PW, Singhal A, Hemmings-Kelly M, Serjeant GR. Height and weight reference curves for homozygous sickle cell disease. Arch Dis Child. 2000;82:204–8.CrossRef Thomas PW, Singhal A, Hemmings-Kelly M, Serjeant GR. Height and weight reference curves for homozygous sickle cell disease. Arch Dis Child. 2000;82:204–8.CrossRef
28.
go back to reference Buison AM, Kawchak DA, Schall J, Ohene-Frempong K, Stallings VA, Zemel BS. Low vitamin D status in children with sickle cell disease. J Pediatr. 2004;145:622–7.CrossRef Buison AM, Kawchak DA, Schall J, Ohene-Frempong K, Stallings VA, Zemel BS. Low vitamin D status in children with sickle cell disease. J Pediatr. 2004;145:622–7.CrossRef
29.
go back to reference Jackson TC, Krauss MJ, Debaun MR, Strunk RC, Arbelaez AM. Vitamin D deficiency and comorbidities in children with sickle cell anemia. Pediatr Hematol Oncol. 2012;29:261–6.CrossRef Jackson TC, Krauss MJ, Debaun MR, Strunk RC, Arbelaez AM. Vitamin D deficiency and comorbidities in children with sickle cell anemia. Pediatr Hematol Oncol. 2012;29:261–6.CrossRef
30.
go back to reference Garrido C, Cela E, Belendez C, Mata C, Huerta J. Status of vitamin D in children with sickle cell disease living in Madrid, Spain. Eur J Pediatr. 2012;171:1793–8.CrossRef Garrido C, Cela E, Belendez C, Mata C, Huerta J. Status of vitamin D in children with sickle cell disease living in Madrid, Spain. Eur J Pediatr. 2012;171:1793–8.CrossRef
31.
go back to reference Singhal A, Parker S, Linsell L, Serjeant G. Energy intake and resting metabolic rate in preschool Jamaican children with homozygous sickle cell disease. Am J Clin Nutr. 2002;75:1093–7.CrossRef Singhal A, Parker S, Linsell L, Serjeant G. Energy intake and resting metabolic rate in preschool Jamaican children with homozygous sickle cell disease. Am J Clin Nutr. 2002;75:1093–7.CrossRef
32.
go back to reference Nolan VG, Nottage KA, Cole EW, Hankins JS, Gurney JG. Prevalence of vitamin D deficiency in sickle cell disease: a systematic review. PLoS One. 2015;10:e0119908.CrossRef Nolan VG, Nottage KA, Cole EW, Hankins JS, Gurney JG. Prevalence of vitamin D deficiency in sickle cell disease: a systematic review. PLoS One. 2015;10:e0119908.CrossRef
33.
go back to reference Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.CrossRef Bell NH, Greene A, Epstein S, Oexmann MJ, Shaw S, Shary J. Evidence for alteration of the vitamin D-endocrine system in blacks. J Clin Invest. 1985;76:470–3.CrossRef
34.
go back to reference O'Connor MY, Thoreson CK, Ramsey NL, Ricks M, Sumner AE. The uncertain significance of low vitamin D levels in African descent populations: a review of the bone and cardiometabolic literature. Prog Cardiovasc Dis. 2013;56:261–9.CrossRef O'Connor MY, Thoreson CK, Ramsey NL, Ricks M, Sumner AE. The uncertain significance of low vitamin D levels in African descent populations: a review of the bone and cardiometabolic literature. Prog Cardiovasc Dis. 2013;56:261–9.CrossRef
35.
go back to reference Heaney RP. The importance of calcium intake for lifelong skeletal health. Calcif Tissue Int. 2002;70:70–3.CrossRef Heaney RP. The importance of calcium intake for lifelong skeletal health. Calcif Tissue Int. 2002;70:70–3.CrossRef
36.
go back to reference Gutierrez OM, Farwell WR, Kermah D, Taylor EN. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and nutrition examination survey. Osteoporos Int. 2011;22:1745–53.CrossRef Gutierrez OM, Farwell WR, Kermah D, Taylor EN. Racial differences in the relationship between vitamin D, bone mineral density, and parathyroid hormone in the National Health and nutrition examination survey. Osteoporos Int. 2011;22:1745–53.CrossRef
37.
go back to reference Seixas MO, Rocha LC, Carvalho MB, Menezes JF, Lyra IM, Nascimento VM, et al. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids Health Dis. 2010;9:91.CrossRef Seixas MO, Rocha LC, Carvalho MB, Menezes JF, Lyra IM, Nascimento VM, et al. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids Health Dis. 2010;9:91.CrossRef
38.
go back to reference Luporini SM, Bendit I, Manhani R, Bracco OL, Manzella L, Giannella-Neto D. Growth hormone and insulin-like growth factor I axis and growth of children with different sickle cell anemia haplotypes. J Pediatr Hematol Oncol. 2001;23:357–63.CrossRef Luporini SM, Bendit I, Manhani R, Bracco OL, Manzella L, Giannella-Neto D. Growth hormone and insulin-like growth factor I axis and growth of children with different sickle cell anemia haplotypes. J Pediatr Hematol Oncol. 2001;23:357–63.CrossRef
39.
go back to reference Collett-Solberg PF, Fleenor D, Schultz WH, Ware RE. Short stature in children with sickle cell anemia correlates with alterations in the IGF-I axis. J Pediatr Endocrinol Metab. 2007;20:211–8.CrossRef Collett-Solberg PF, Fleenor D, Schultz WH, Ware RE. Short stature in children with sickle cell anemia correlates with alterations in the IGF-I axis. J Pediatr Endocrinol Metab. 2007;20:211–8.CrossRef
40.
go back to reference Mandese V, Marotti F, Bedetti L, Bigi E, Palazzi G, Iughetti L. Effects of nutritional intake on disease severity in children with sickle cell disease. Nutr J. 2016;15:46.CrossRef Mandese V, Marotti F, Bedetti L, Bigi E, Palazzi G, Iughetti L. Effects of nutritional intake on disease severity in children with sickle cell disease. Nutr J. 2016;15:46.CrossRef
41.
go back to reference Soliman AT, Darwish A, Mohammed SH, Bassiony MR, el Banna N, Asfour M. Circulating growth hormone (GH), insulin-like growth factor-I (IGF-I) and free thyroxine, GH response to clonidine provocation and CT scanning of the hypothalamic-pituitary area in children with sickle cell disease. J Trop Pediatr. 1995;41:285–9.CrossRef Soliman AT, Darwish A, Mohammed SH, Bassiony MR, el Banna N, Asfour M. Circulating growth hormone (GH), insulin-like growth factor-I (IGF-I) and free thyroxine, GH response to clonidine provocation and CT scanning of the hypothalamic-pituitary area in children with sickle cell disease. J Trop Pediatr. 1995;41:285–9.CrossRef
42.
go back to reference Soliman AT, el Banna N, alSalmi I, De Silva V, Craig A, Asfour M. Growth hormone secretion and circulating insulin-like growth factor-I (IGF-I) and IGF binding protein-3 concentrations in children with sickle cell disease. Metabolism. 1997;46:1241–5.CrossRef Soliman AT, el Banna N, alSalmi I, De Silva V, Craig A, Asfour M. Growth hormone secretion and circulating insulin-like growth factor-I (IGF-I) and IGF binding protein-3 concentrations in children with sickle cell disease. Metabolism. 1997;46:1241–5.CrossRef
43.
go back to reference Nunlee-Bland G, Rana SR, Houston-Yu PE, Odonkor W. Growth hormone deficiency in patients with sickle cell disease and growth failure. J Pediatr Endocrinol Metab. 2004;17:601–6.CrossRef Nunlee-Bland G, Rana SR, Houston-Yu PE, Odonkor W. Growth hormone deficiency in patients with sickle cell disease and growth failure. J Pediatr Endocrinol Metab. 2004;17:601–6.CrossRef
44.
go back to reference Fung EB, Harmatz PR, Lee PD, Milet M, Bellevue R, Jeng MR, et al. Multi-Centre study of Iron overload research group. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135:574–82.CrossRef Fung EB, Harmatz PR, Lee PD, Milet M, Bellevue R, Jeng MR, et al. Multi-Centre study of Iron overload research group. Increased prevalence of iron-overload associated endocrinopathy in thalassaemia versus sickle-cell disease. Br J Haematol. 2006;135:574–82.CrossRef
Metadata
Title
Endocrine and metabolic complications in children and adolescents with Sickle Cell Disease: an Italian cohort study
Authors
V. Mandese
E. Bigi
P. Bruzzi
G. Palazzi
B. Predieri
L. Lucaccioni
M. Cellini
L. Iughetti
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2019
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-019-1423-9

Other articles of this Issue 1/2019

BMC Pediatrics 1/2019 Go to the issue