Skip to main content
Top
Published in: BMC Pediatrics 1/2018

Open Access 01-12-2018 | Research article

Occlusal force predicts global motion coherence threshold in adolescent boys

Authors: Kensuke Kiriishi, Hirokazu Doi, Nobuaki Magata, Tetsuro Torisu, Mihoko Tanaka, Makoto Ohkubo, Mitsuhiro Haneda, Masaki Okatomi, Kazuyuki Shinohara, Takao Ayuse

Published in: BMC Pediatrics | Issue 1/2018

Login to get access

Abstract

Background

Beneficial effects of mastication on cognitive abilities in the elderly have been shown in human studies. However, little is currently known about the effect of masticatory stimulation on cognitive and perceptual ability in younger populations. The purpose of the present study is to investigate the influences of masticatory stimulation on perceptual ability in adolescent boys.

Methods

The present study examined the relationship between occlusal force (i.e., masticatory stimulation) and visual perception ability in adolescent boys. Visual perception ability was quantified by measuring global motion coherence threshold using psychophysical method. As an index of masticatory stimulation, occlusal force was measured by pressure sensitive film. We also measured participants’ athletic ability, e.g. aerobic capacity and grip strength, as potential confounding factor.

Results

The multiple regression analysis revealed a significant negative correlation between global motion coherence threshold and occlusal force, which persisted after controlling for confounding factors such as age and aerobic capacity.

Conclusions

This finding indicates that masticatory stimulation enhances visual perception in adolescent boys, indicating the possibility that beneficial effects of masticatory stimulation are observed not only in the elderly but in developing population consistently with the findings of the previous animal studies.
Literature
1.
go back to reference Rolls ET, Verhagen JV, Kadohisa M. Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and Capsaicin. J Neurophysiol. 2003;90(6):371.CrossRef Rolls ET, Verhagen JV, Kadohisa M. Representations of the texture of food in the primate orbitofrontal cortex: neurons responding to viscosity, grittiness, and Capsaicin. J Neurophysiol. 2003;90(6):371.CrossRef
2.
go back to reference Marchili N, Ortu E, Pietropaoli D, Cattaneo R, Monaco A. Dental occlusion and ophthalmology: a literature review. Open Dent J. 2016;10:460–8.CrossRef Marchili N, Ortu E, Pietropaoli D, Cattaneo R, Monaco A. Dental occlusion and ophthalmology: a literature review. Open Dent J. 2016;10:460–8.CrossRef
3.
go back to reference Foster KD, Grigor JM, Cheong JN, Yoo MJ, Bronlund JE, Morgenstern MP. The role of oral processing in dynamic sensory perception. J Food Sci. 2001;76(2):R49–61.CrossRef Foster KD, Grigor JM, Cheong JN, Yoo MJ, Bronlund JE, Morgenstern MP. The role of oral processing in dynamic sensory perception. J Food Sci. 2001;76(2):R49–61.CrossRef
4.
go back to reference Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, Nakashima T. Reduced mastication impairs memory function. J Dent Res. 2017;96(9):1058–66.CrossRef Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, Nakashima T. Reduced mastication impairs memory function. J Dent Res. 2017;96(9):1058–66.CrossRef
5.
go back to reference Nose-Ishibashi K, Watahiki J, Yamada K, (...), Yoshikawa T, Maki K. Soft-diet feeding after weaning affects behavior in mice: potential increase in vulnerability to mental disorders. Neuroscience 2014; 263: 257–268.CrossRef Nose-Ishibashi K, Watahiki J, Yamada K, (...), Yoshikawa T, Maki K. Soft-diet feeding after weaning affects behavior in mice: potential increase in vulnerability to mental disorders. Neuroscience 2014; 263: 257–268.CrossRef
6.
go back to reference Frota de Almeida MN, de Siqueira Mendes FDCC, Gurgel Felício AP, (...), Picanço-Diniz CW, Kronka Sosthenes MC. Spatial memory decline after masticatory deprivation and aging is associated with altered laminar distribution of CA1 astrocytes. BMC Neurosci 2012; 13(1): 23.CrossRef Frota de Almeida MN, de Siqueira Mendes FDCC, Gurgel Felício AP, (...), Picanço-Diniz CW, Kronka Sosthenes MC. Spatial memory decline after masticatory deprivation and aging is associated with altered laminar distribution of CA1 astrocytes. BMC Neurosci 2012; 13(1): 23.CrossRef
7.
go back to reference Tsutsui K, Kaku M, Motokawa M, Tohma Y, Kawata T, Fujita T, et al. Influences of reduced masticatory sensory input from soft-diet feeding upon spatial memory/learning 46 ability in mice. Biomed Res. 2007;28(1):1–7.CrossRef Tsutsui K, Kaku M, Motokawa M, Tohma Y, Kawata T, Fujita T, et al. Influences of reduced masticatory sensory input from soft-diet feeding upon spatial memory/learning 46 ability in mice. Biomed Res. 2007;28(1):1–7.CrossRef
8.
go back to reference Okihara H, Ito J, Kokai S, Ishida T, Hiranuma M, Kato C, et al. Liquid diet induces memory impairment accompanied by a decreased number of hippocampal neurons in mice. J Neurosci Res. 2014;92(8):1010–7.CrossRef Okihara H, Ito J, Kokai S, Ishida T, Hiranuma M, Kato C, et al. Liquid diet induces memory impairment accompanied by a decreased number of hippocampal neurons in mice. J Neurosci Res. 2014;92(8):1010–7.CrossRef
9.
go back to reference Aoki H, Kimoto K, Hori N, Toyoda M. Cell proliferation in the dentate gyrus of rat hippocampus is inhibited by soft diet feeding. Gerontology. 2005;51:369–74.CrossRef Aoki H, Kimoto K, Hori N, Toyoda M. Cell proliferation in the dentate gyrus of rat hippocampus is inhibited by soft diet feeding. Gerontology. 2005;51:369–74.CrossRef
10.
go back to reference Akazawa Y, Kitamura T, Fujihara Y, Yoshimura Y, Mitome M, Hasegawa T. Forced mastication increases survival of adult neural stem cells in the hippocampal dentate gyrus. Int J Mol Med. 2013;31(2):307–14.CrossRef Akazawa Y, Kitamura T, Fujihara Y, Yoshimura Y, Mitome M, Hasegawa T. Forced mastication increases survival of adult neural stem cells in the hippocampal dentate gyrus. Int J Mol Med. 2013;31(2):307–14.CrossRef
11.
go back to reference Watanabe K, Tonosaki K, Kawase T, Karasawa N, Nagatsu I, Fujita M, et al. Evidence for involvement of dysfunctional teeth in the senile process in the hippocampus of SAMP8 mice. Exp Gerontol. 2001;36:283–95.CrossRef Watanabe K, Tonosaki K, Kawase T, Karasawa N, Nagatsu I, Fujita M, et al. Evidence for involvement of dysfunctional teeth in the senile process in the hippocampus of SAMP8 mice. Exp Gerontol. 2001;36:283–95.CrossRef
12.
go back to reference Yoshino F, Yoshida A, Hori N, Ono Y, Kimoto K, Onozuka M, et al. Soft-food diet induces oxidative stress in the rat brain. Neurosci Lett. 2012;508(1):42–6.CrossRef Yoshino F, Yoshida A, Hori N, Ono Y, Kimoto K, Onozuka M, et al. Soft-food diet induces oxidative stress in the rat brain. Neurosci Lett. 2012;508(1):42–6.CrossRef
13.
go back to reference Onozuka M, Fujita M, Watanabe K, Hirano Y, Niwa M, Nishiyama K, et al. Age-related changes in brain regional activity during chewing: a functional magnetic resonance imaging study. J Dent Res. 2003;82:657–60.CrossRef Onozuka M, Fujita M, Watanabe K, Hirano Y, Niwa M, Nishiyama K, et al. Age-related changes in brain regional activity during chewing: a functional magnetic resonance imaging study. J Dent Res. 2003;82:657–60.CrossRef
14.
go back to reference Takada T, Miyamoto T. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging. Neurosci Lett. 2004;360(3):137–40.CrossRef Takada T, Miyamoto T. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging. Neurosci Lett. 2004;360(3):137–40.CrossRef
15.
go back to reference Hirano Y, Obata T, Takahashi H, (...), Ikehira H, Onozuka M. Effects of chewing on cognitive processing speed. Brain Cogn 2013; 81(3): 376–381.CrossRef Hirano Y, Obata T, Takahashi H, (...), Ikehira H, Onozuka M. Effects of chewing on cognitive processing speed. Brain Cogn 2013; 81(3): 376–381.CrossRef
16.
go back to reference Chen H, Iinuma M, Onozuka M, Kubo KY. Chewing maintains hippocampus-dependent cognitive function. Int J Med Sci. 2015;12(6):502–9.CrossRef Chen H, Iinuma M, Onozuka M, Kubo KY. Chewing maintains hippocampus-dependent cognitive function. Int J Med Sci. 2015;12(6):502–9.CrossRef
17.
go back to reference Hansson P, Sunnegårdh-Grönberg K, Bergdahl J, Bergdahl M, Nyberg L, Nilsson LG. Relationship between natural teeth and memory in a healthy elderly population. Eur J Oral Sci. 2013;121(4):333–40.CrossRef Hansson P, Sunnegårdh-Grönberg K, Bergdahl J, Bergdahl M, Nyberg L, Nilsson LG. Relationship between natural teeth and memory in a healthy elderly population. Eur J Oral Sci. 2013;121(4):333–40.CrossRef
18.
go back to reference Cerutti-Kopplin D, Emami E, Hilgert JB, Hugo FN, Padilha DM. Cognitive status of edentate elders wearing complete denture: does quality of denture matter? J Dent. 2015;43(9):1071–5.CrossRef Cerutti-Kopplin D, Emami E, Hilgert JB, Hugo FN, Padilha DM. Cognitive status of edentate elders wearing complete denture: does quality of denture matter? J Dent. 2015;43(9):1071–5.CrossRef
19.
go back to reference Baker JR, Bezance JB, Zellaby E, Aggleton JP. Chewing gum can produce context-dependent effects upon memory. Appetite. 2004;43(2):207–10.CrossRef Baker JR, Bezance JB, Zellaby E, Aggleton JP. Chewing gum can produce context-dependent effects upon memory. Appetite. 2004;43(2):207–10.CrossRef
20.
go back to reference Miura H, Yamasaki k KK, Miura K, Sumi Y. Relationship between cognitive function and mastication in elderly females. J Oral Rehabil. 2003;30:808–11.CrossRef Miura H, Yamasaki k KK, Miura K, Sumi Y. Relationship between cognitive function and mastication in elderly females. J Oral Rehabil. 2003;30:808–11.CrossRef
21.
go back to reference Scherder E, Posthuma W, Bakker T, Vuijk PJ, Lobbezoo F. Functional status of masticatory system, executive function and episodic memory in older persons. J Oral Rehabil. 2008;35:324–36.CrossRef Scherder E, Posthuma W, Bakker T, Vuijk PJ, Lobbezoo F. Functional status of masticatory system, executive function and episodic memory in older persons. J Oral Rehabil. 2008;35:324–36.CrossRef
22.
go back to reference Sakamoto K, Nakata H, Honda Y, Kakigi R. The effect of mastication on human motor preparation processing: a study with CNV and MRCP. Neurosci Res. 2009;64(3):259–66.CrossRef Sakamoto K, Nakata H, Honda Y, Kakigi R. The effect of mastication on human motor preparation processing: a study with CNV and MRCP. Neurosci Res. 2009;64(3):259–66.CrossRef
23.
go back to reference Allen AP, Smith AP. Effects of chewing gum and time-on-task on alertness and attention. Nutr Neurosci. 2012;15(4):176–85.CrossRef Allen AP, Smith AP. Effects of chewing gum and time-on-task on alertness and attention. Nutr Neurosci. 2012;15(4):176–85.CrossRef
24.
go back to reference Pesce C, Tessitore A, Casella R, Pirritano M, Capranica L. Focusing visual attention at rest and during physical exercise in soccer players. J Sports Sci. 2007;25:1259–70.CrossRef Pesce C, Tessitore A, Casella R, Pirritano M, Capranica L. Focusing visual attention at rest and during physical exercise in soccer players. J Sports Sci. 2007;25:1259–70.CrossRef
25.
go back to reference Taddei F, Bultrini A, Spinelli D, Russo F. Neural correlates of attentional and executive processing in middle-age fencers. Med Sci Sports Exerc. 2012;44:1057–66.CrossRef Taddei F, Bultrini A, Spinelli D, Russo F. Neural correlates of attentional and executive processing in middle-age fencers. Med Sci Sports Exerc. 2012;44:1057–66.CrossRef
26.
go back to reference Huijgen BCH, Leemhuis S, Kok NM, Verburgh L, Oosterlaan J, Elferink-Gemser MT, et al. Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PLoS One. 2015;10(12):e0144580.CrossRef Huijgen BCH, Leemhuis S, Kok NM, Verburgh L, Oosterlaan J, Elferink-Gemser MT, et al. Cognitive functions in elite and sub-elite youth soccer players aged 13 to 17 years. PLoS One. 2015;10(12):e0144580.CrossRef
27.
go back to reference Wang CH, Shang CA, Liang CC, Shih YM, Chiu CM, Tseng WS, Hung P, Tzeng DL, Muggleton OJL, Juan NG. Open vs. closed skill sports and the modulation of inhibitory control. PlosOne. 2013;8(2):e55773.CrossRef Wang CH, Shang CA, Liang CC, Shih YM, Chiu CM, Tseng WS, Hung P, Tzeng DL, Muggleton OJL, Juan NG. Open vs. closed skill sports and the modulation of inhibitory control. PlosOne. 2013;8(2):e55773.CrossRef
28.
go back to reference Ohkawa S, Shinohara K, Hashihara M, et al. Sports medical analysis on masticatory muscle function in professional soccer players. J Jpn Soc Stomatognath Funct. 1994;1:165–73.CrossRef Ohkawa S, Shinohara K, Hashihara M, et al. Sports medical analysis on masticatory muscle function in professional soccer players. J Jpn Soc Stomatognath Funct. 1994;1:165–73.CrossRef
29.
go back to reference Galván A. Insights about adolescent behavior, plasticity, and policy from neuroscience research. Neuron. 2014;83(2):262–5.CrossRef Galván A. Insights about adolescent behavior, plasticity, and policy from neuroscience research. Neuron. 2014;83(2):262–5.CrossRef
30.
go back to reference Ernst M, Mueller SC. The adolescent brain: insight from functional neuroimaging research. Dev Neurobiol. 2008;68(6):729–43.CrossRef Ernst M, Mueller SC. The adolescent brain: insight from functional neuroimaging research. Dev Neurobiol. 2008;68(6):729–43.CrossRef
31.
go back to reference Braddick O, Atkinson J. Development of human visual function. Vis Res. 2011;51(13):1588–609.CrossRef Braddick O, Atkinson J. Development of human visual function. Vis Res. 2011;51(13):1588–609.CrossRef
32.
go back to reference Braddick O, Atkinson J, Akshoomoff N, (...), Dale A, Jernigan T. Individual differences in children's global motion sensitivity correlate with TBSS-based measures of the superior longitudinal fasciculus. Vis Res 2017; 141: 145–156.CrossRef Braddick O, Atkinson J, Akshoomoff N, (...), Dale A, Jernigan T. Individual differences in children's global motion sensitivity correlate with TBSS-based measures of the superior longitudinal fasciculus. Vis Res 2017; 141: 145–156.CrossRef
33.
go back to reference Robertson CE, Thomas C, Kravitz DJ, Wallace GL, Baron-Cohen S, Martin A, et al. Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain. 2014;137(Pt 9):2588–99.CrossRef Robertson CE, Thomas C, Kravitz DJ, Wallace GL, Baron-Cohen S, Martin A, et al. Global motion perception deficits in autism are reflected as early as primary visual cortex. Brain. 2014;137(Pt 9):2588–99.CrossRef
34.
go back to reference Meier K, Giaschi D. Effect of spatial and temporal stimulus parameters on the maturation of global motion perception. Vis Res. 2017;135:1–9.CrossRef Meier K, Giaschi D. Effect of spatial and temporal stimulus parameters on the maturation of global motion perception. Vis Res. 2017;135:1–9.CrossRef
35.
go back to reference Castelli DM, Hillman CH, Buck SM, Erwin HE. Physical fitness and academic achievement in third- and fifth-grade students. J Sport Exerc Psychol. 2007;29(2):239–52.CrossRef Castelli DM, Hillman CH, Buck SM, Erwin HE. Physical fitness and academic achievement in third- and fifth-grade students. J Sport Exerc Psychol. 2007;29(2):239–52.CrossRef
36.
go back to reference Hillman CH, Kamijo K, Scudder M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2001;52(Suppl 1):S21–8. Hillman CH, Kamijo K, Scudder M. A review of chronic and acute physical activity participation on neuroelectric measures of brain health and cognition during childhood. Prev Med. 2001;52(Suppl 1):S21–8.
37.
go back to reference Pindus DM, Davis RDM, Hillman CH, (...), Biddle SJH, Sherar LB. The relationship of moderate-to-vigorous physical activity to cognitive processing in adolescents: findings from the ALSPAC birth cohort. Psychol Res 2015; 79(5): 715–728.CrossRef Pindus DM, Davis RDM, Hillman CH, (...), Biddle SJH, Sherar LB. The relationship of moderate-to-vigorous physical activity to cognitive processing in adolescents: findings from the ALSPAC birth cohort. Psychol Res 2015; 79(5): 715–728.CrossRef
38.
go back to reference Treutwein B. Adaptive psychophysical procedures. Vis Res. 1995;35(17):2503–22.CrossRef Treutwein B. Adaptive psychophysical procedures. Vis Res. 1995;35(17):2503–22.CrossRef
39.
go back to reference Kuninori T, Tomonari H, Uehara S, Kitashima F, Yagi T, Miyawaki S. Influence of maximum bite force on jaw movement during gummy jelly mastication. J Oral Rehabil. 2014;41(5):338–45.CrossRef Kuninori T, Tomonari H, Uehara S, Kitashima F, Yagi T, Miyawaki S. Influence of maximum bite force on jaw movement during gummy jelly mastication. J Oral Rehabil. 2014;41(5):338–45.CrossRef
40.
go back to reference Kamiya K, Narita N, Iwaki S. Improved prefrontal activity and chewing performance as function of wearing denture in partially edentulous elderly individuals: functional near-infrared spectroscopy study. PLoS One. 2016;11(6):e0158070.CrossRef Kamiya K, Narita N, Iwaki S. Improved prefrontal activity and chewing performance as function of wearing denture in partially edentulous elderly individuals: functional near-infrared spectroscopy study. PLoS One. 2016;11(6):e0158070.CrossRef
41.
go back to reference Okada T, Ikebe K, Inomata C, Takeshita H, Uota M, Mihara Y, Matsuda K, Kitamura M, Murakami S, Gondo Y, Kamide K, Masui Y, Takahashi R, Arai Y, Maeda Y. Association of periodontal status with occlusal force and food acceptability in 70-year-old adults: from SONIC study. J Oral Rehabil. 2014;41(12):912–9.CrossRef Okada T, Ikebe K, Inomata C, Takeshita H, Uota M, Mihara Y, Matsuda K, Kitamura M, Murakami S, Gondo Y, Kamide K, Masui Y, Takahashi R, Arai Y, Maeda Y. Association of periodontal status with occlusal force and food acceptability in 70-year-old adults: from SONIC study. J Oral Rehabil. 2014;41(12):912–9.CrossRef
42.
go back to reference Vero N, Mishra N, Singh BP, Singh K, Jurel SK, Kumar V. Assessment of swallowing and masticatory performance in obturator wearers: a clinical study. J Adv Prosthodont. 2015;7(1):8–14.CrossRef Vero N, Mishra N, Singh BP, Singh K, Jurel SK, Kumar V. Assessment of swallowing and masticatory performance in obturator wearers: a clinical study. J Adv Prosthodont. 2015;7(1):8–14.CrossRef
43.
go back to reference Mehrsa P, Maryam A. Locating mandibular foramen in children with mandibular retrognathism in mixed dentition. J Dent Res Dent Clin Dent Prospects. 2015;9(2):66–71.CrossRef Mehrsa P, Maryam A. Locating mandibular foramen in children with mandibular retrognathism in mixed dentition. J Dent Res Dent Clin Dent Prospects. 2015;9(2):66–71.CrossRef
44.
go back to reference Léger LA, Lambert J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol. 1982;49:1–12.CrossRef Léger LA, Lambert J. A maximal multistage 20-m shuttle run test to predict VO2 max. Eur J Appl Physiol Occup Physiol. 1982;49:1–12.CrossRef
45.
go back to reference Mechelen W, Hlobil H, Kemper HC. Validation of two running tests as estimates of maximal aerobic power in children. Eur J Appl Physiol Occup Physiol. 1986;55:503–6.CrossRef Mechelen W, Hlobil H, Kemper HC. Validation of two running tests as estimates of maximal aerobic power in children. Eur J Appl Physiol Occup Physiol. 1986;55:503–6.CrossRef
46.
go back to reference Paliczka VJ, Nichols AK, Boreham CA. A multi-stage shuttle run as a predictor of running performance and maximal oxygen uptake in adults. Brit J Sport Med. 1987;21:163–5.CrossRef Paliczka VJ, Nichols AK, Boreham CA. A multi-stage shuttle run as a predictor of running performance and maximal oxygen uptake in adults. Brit J Sport Med. 1987;21:163–5.CrossRef
47.
go back to reference Box GEP, Cox DR. (1964). An analysis of transformations. J R Stat Soc Series B. 1964;26(2):211–52. Box GEP, Cox DR. (1964). An analysis of transformations. J R Stat Soc Series B. 1964;26(2):211–52.
48.
go back to reference Prunty M, Barnett AL, Wilmut K, Plumb M. Visual perceptual and handwriting skills in children with developmental coordination disorder. Hum Mov Sci. 2016;49:54–65.CrossRef Prunty M, Barnett AL, Wilmut K, Plumb M. Visual perceptual and handwriting skills in children with developmental coordination disorder. Hum Mov Sci. 2016;49:54–65.CrossRef
49.
go back to reference O'Brien V, Cermak SA, Murray E. The relationship between visual-perceptual motor abilities and clumsiness in children with and without learning disabilities. Am J Occup Ther. 1988;42(6):359–63.CrossRef O'Brien V, Cermak SA, Murray E. The relationship between visual-perceptual motor abilities and clumsiness in children with and without learning disabilities. Am J Occup Ther. 1988;42(6):359–63.CrossRef
50.
go back to reference Fraedrich EM, Flanagin VL, Duann JR, Brandt T, Glasauer S. Hippocampal involvement in processing of indistinct visual motion stimuli. J Cognitive Neurosci. 2012;24(6):1344–57.CrossRef Fraedrich EM, Flanagin VL, Duann JR, Brandt T, Glasauer S. Hippocampal involvement in processing of indistinct visual motion stimuli. J Cognitive Neurosci. 2012;24(6):1344–57.CrossRef
51.
go back to reference Bar M. The proactive brain: memory for predictions. Phil Trans R Soc Lond B Biol Sci. 2009;364(1521):1235–43.CrossRef Bar M. The proactive brain: memory for predictions. Phil Trans R Soc Lond B Biol Sci. 2009;364(1521):1235–43.CrossRef
52.
go back to reference Sakamoto K, Nakata H, Kakigi R. The effect of mastication on human cognitive processing: a study using event-related potentials. Clin Neurophysiol. 2009;120(1):41–50.CrossRef Sakamoto K, Nakata H, Kakigi R. The effect of mastication on human cognitive processing: a study using event-related potentials. Clin Neurophysiol. 2009;120(1):41–50.CrossRef
53.
go back to reference Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. 2009;32(3):160–9.CrossRef Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci. 2009;32(3):160–9.CrossRef
54.
go back to reference Takano T, Tian GF, Peng W, (...), Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9(2): 260–267.CrossRef Takano T, Tian GF, Peng W, (...), Han X, Nedergaard M. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006; 9(2): 260–267.CrossRef
55.
go back to reference Sathyanarayana HP, Premkumar S, Manjula WS. Assessment of maximum voluntary bite force in adults with normal occlusion and different types of malocclusions. J Contemp Dent Pract. 2012;13(4):534–8.PubMed Sathyanarayana HP, Premkumar S, Manjula WS. Assessment of maximum voluntary bite force in adults with normal occlusion and different types of malocclusions. J Contemp Dent Pract. 2012;13(4):534–8.PubMed
56.
go back to reference Roldán SI, Restrepo LG, Isaza JF, Vélez LG, Buschang PH. Are maximum bite forces of subjects 7 to 17 years of age related to malocclusion? Angle Orthod. 2016;86(3):456–61.CrossRef Roldán SI, Restrepo LG, Isaza JF, Vélez LG, Buschang PH. Are maximum bite forces of subjects 7 to 17 years of age related to malocclusion? Angle Orthod. 2016;86(3):456–61.CrossRef
Metadata
Title
Occlusal force predicts global motion coherence threshold in adolescent boys
Authors
Kensuke Kiriishi
Hirokazu Doi
Nobuaki Magata
Tetsuro Torisu
Mihoko Tanaka
Makoto Ohkubo
Mitsuhiro Haneda
Masaki Okatomi
Kazuyuki Shinohara
Takao Ayuse
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2018
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-018-1309-2

Other articles of this Issue 1/2018

BMC Pediatrics 1/2018 Go to the issue