Skip to main content
Top
Published in: BMC Pediatrics 1/2015

Open Access 01-12-2015 | Research article

Potassium urinary excretion and dietary intake: a cross-sectional analysis in 8–10 year-old children

Authors: Ana Catarina Oliveira, Patrícia Padrão, André Moreira, Mariana Pinto, Mafalda Neto, Tânia Santos, Joana Madureira, Eduardo de Oliveira Fernandes, Pedro Graça, João Breda, Pedro Moreira

Published in: BMC Pediatrics | Issue 1/2015

Login to get access

Abstract

Background

Data from studies assessing the intake of potassium, and the concomitant sodium-to-potassium ratio are limited. The aim of this study was to evaluate potassium and sodium-to-potassium ratio intake in 8–10 year-old children.

Methods

A cross-sectional survey was carried out from January to June 2014 and data from 163 children (81 boys) were included. Potassium intake was estimated by 24-h urine collection and coefficient of creatinine was used to validate completeness of urine collections. Urinary sodium and sodium-to-potassium ratio were also analysed. A 24-h dietary recall was used to provide information on dietary sources of potassium. Height and weight were measured according to international standards.

Results

The mean urinary potassium excretion was 1701 ± 594 mg/day in boys, and 1682 ± 541 mg/day in girls (p = 0.835); 8.0 % of children met the WHO recommendations for potassium intake. The mean sodium excretion was 2935 ± 1075 mg/day in boys and 2381 ± 1045 mg/day in girls (p <0.001) and urinary sodium-to-potassium ratio was 3.2 ± 1.4 in boys, and 2.5 ± 1.1 in girls (p = 0.002). The mean fruit and vegetable intake was 353.1 ± 232.5 g/day in boys, and 290.8 ± 213.1 g/day in girls (p = 0.101).

Conclusions

This study reported a low compliance of potassium intake recommendations in 8–10 year-old children. Health promotion interventions are needed in order to broaden public awareness of potassium inadequacy and to increase potassium intake.
Literature
1.
go back to reference WHO. Guideline: potassium intake for adults and children. Geneva: World Health Organization (WHO); 2012. WHO. Guideline: potassium intake for adults and children. Geneva: World Health Organization (WHO); 2012.
2.
go back to reference Kristjansdottir AG, Thorsdottir I. Adherence to food-based dietary guidelines and evaluation of nutrient intake in 7-year-old children. Public Health Nutr. 2009;12(11):1999–2008.CrossRefPubMed Kristjansdottir AG, Thorsdottir I. Adherence to food-based dietary guidelines and evaluation of nutrient intake in 7-year-old children. Public Health Nutr. 2009;12(11):1999–2008.CrossRefPubMed
3.
go back to reference Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378.CrossRefPubMedPubMedCentral Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta-analyses. BMJ. 2013;346:f1378.CrossRefPubMedPubMedCentral
4.
go back to reference McCarron DA, Reusser ME. Are low intakes of calcium and potassium important causes of cardiovascular disease? Am J Hypertens. 2001;14(6, Supplement 1):S206–12.CrossRef McCarron DA, Reusser ME. Are low intakes of calcium and potassium important causes of cardiovascular disease? Am J Hypertens. 2001;14(6, Supplement 1):S206–12.CrossRef
5.
go back to reference Kristbjornsdottir OK, Halldorsson TI, Thorsdottir I, Gunnarsdottir I. Association between 24-hour urine sodium and potassium excretion and diet quality in six-year-old children: a cross sectional study. Nutr J. 2012;11(94):1475–2891. Kristbjornsdottir OK, Halldorsson TI, Thorsdottir I, Gunnarsdottir I. Association between 24-hour urine sodium and potassium excretion and diet quality in six-year-old children: a cross sectional study. Nutr J. 2012;11(94):1475–2891.
6.
go back to reference Meneton P, Lafay L, Tard A, Dufour A, Ireland J, Menard J, et al. Dietary sources and correlates of sodium and potassium intakes in the French general population. Eur J Clin Nutr. 2009;63(10):1169–75.CrossRefPubMed Meneton P, Lafay L, Tard A, Dufour A, Ireland J, Menard J, et al. Dietary sources and correlates of sodium and potassium intakes in the French general population. Eur J Clin Nutr. 2009;63(10):1169–75.CrossRefPubMed
7.
go back to reference Mente A, Irvine EJ, Honey RJ, Logan AG. Urinary potassium is a clinically useful test to detect a poor quality diet. J Nutr. 2009;139(4):743–9.CrossRefPubMed Mente A, Irvine EJ, Honey RJ, Logan AG. Urinary potassium is a clinically useful test to detect a poor quality diet. J Nutr. 2009;139(4):743–9.CrossRefPubMed
8.
go back to reference Sinha-Hikim I, Sinha-Hikim AP, Parveen M, Shen R, Goswami R, Tran P, et al. Long-term supplementation with a cystine-based antioxidant delays loss of muscle mass in aging. J Gerontol A Biol Sci Med Sci. 2013;68(7):749–59.CrossRefPubMedPubMedCentral Sinha-Hikim I, Sinha-Hikim AP, Parveen M, Shen R, Goswami R, Tran P, et al. Long-term supplementation with a cystine-based antioxidant delays loss of muscle mass in aging. J Gerontol A Biol Sci Med Sci. 2013;68(7):749–59.CrossRefPubMedPubMedCentral
9.
go back to reference Mikkila V, Rasanen L, Raitakari OT, Pietinen P, Viikari J. Longitudinal changes in diet from childhood into adulthood with respect to risk of cardiovascular diseases: the cardiovascular risk in young Finns study. Eur J Clin Nutr. 2004;58(7):1038–45.CrossRefPubMed Mikkila V, Rasanen L, Raitakari OT, Pietinen P, Viikari J. Longitudinal changes in diet from childhood into adulthood with respect to risk of cardiovascular diseases: the cardiovascular risk in young Finns study. Eur J Clin Nutr. 2004;58(7):1038–45.CrossRefPubMed
10.
go back to reference MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–74.CrossRefPubMed MacMahon S, Peto R, Cutler J, Collins R, Sorlie P, Neaton J, et al. Blood pressure, stroke, and coronary heart disease. Part 1, prolonged differences in blood pressure: prospective observational studies corrected for the regression dilution bias. Lancet. 1990;335(8692):765–74.CrossRefPubMed
11.
go back to reference Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.CrossRefPubMed Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet. 2002;360(9349):1903–13.CrossRefPubMed
12.
go back to reference He FJ, Marrero NM, Macgregor GA. Salt and blood pressure in children and adolescents. J Hum Hypertens. 2008;22(1):4–11.CrossRefPubMed He FJ, Marrero NM, Macgregor GA. Salt and blood pressure in children and adolescents. J Hum Hypertens. 2008;22(1):4–11.CrossRefPubMed
15.
go back to reference Berry SE, Mulla UZ, Chowienczyk PJ, Sanders TA. Increased potassium intake from fruit and vegetables or supplements does not lower blood pressure or improve vascular function in UK men and women with early hypertension: a randomised controlled trial. Br J Nutr. 2010;104(12):1839–47.CrossRefPubMed Berry SE, Mulla UZ, Chowienczyk PJ, Sanders TA. Increased potassium intake from fruit and vegetables or supplements does not lower blood pressure or improve vascular function in UK men and women with early hypertension: a randomised controlled trial. Br J Nutr. 2010;104(12):1839–47.CrossRefPubMed
16.
go back to reference Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I–analysis of observational data among populations. BMJ. 1991;302(6780):811–5.CrossRefPubMedPubMedCentral Law MR, Frost CD, Wald NJ. By how much does dietary salt reduction lower blood pressure? I–analysis of observational data among populations. BMJ. 1991;302(6780):811–5.CrossRefPubMedPubMedCentral
17.
go back to reference Hedayati SS, Minhajuddin AT, Ijaz A, Moe OW, Elsayed EF, Reilly RF, et al. Association of urinary sodium/potassium ratio with blood pressure: sex and racial differences. Clin J Am Soc Nephrol. 2012;7(2):315–22.CrossRefPubMedPubMedCentral Hedayati SS, Minhajuddin AT, Ijaz A, Moe OW, Elsayed EF, Reilly RF, et al. Association of urinary sodium/potassium ratio with blood pressure: sex and racial differences. Clin J Am Soc Nephrol. 2012;7(2):315–22.CrossRefPubMedPubMedCentral
18.
go back to reference Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H, et al. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ. 1996;312(7041):1249–53.CrossRefPubMedPubMedCentral Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H, et al. Intersalt revisited: further analyses of 24 hour sodium excretion and blood pressure within and across populations. Intersalt Cooperative Research Group. BMJ. 1996;312(7041):1249–53.CrossRefPubMedPubMedCentral
19.
go back to reference Zhang Z, Cogswell ME, Gillespie C, Fang J, Loustalot F, Dai S, et al. Association between usual sodium and potassium intake and blood pressure and hypertension among U.S. adults: NHANES 2005–2010. PLoS One. 2013;8(10):e75289.CrossRefPubMedPubMedCentral Zhang Z, Cogswell ME, Gillespie C, Fang J, Loustalot F, Dai S, et al. Association between usual sodium and potassium intake and blood pressure and hypertension among U.S. adults: NHANES 2005–2010. PLoS One. 2013;8(10):e75289.CrossRefPubMedPubMedCentral
20.
go back to reference Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885–8.CrossRefPubMedPubMedCentral Cook NR, Cutler JA, Obarzanek E, Buring JE, Rexrode KM, Kumanyika SK, et al. Long term effects of dietary sodium reduction on cardiovascular disease outcomes: observational follow-up of the trials of hypertension prevention (TOHP). BMJ. 2007;334(7599):885–8.CrossRefPubMedPubMedCentral
21.
go back to reference Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.CrossRefPubMedPubMedCentral Strazzullo P, D’Elia L, Kandala NB, Cappuccio FP. Salt intake, stroke, and cardiovascular disease: meta-analysis of prospective studies. BMJ. 2009;339:b4567.CrossRefPubMedPubMedCentral
22.
go back to reference Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, et al. Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2011;171(13):1183–91.CrossRefPubMed Yang Q, Liu T, Kuklina EV, Flanders WD, Hong Y, Gillespie C, et al. Sodium and potassium intake and mortality among US adults: prospective data from the Third National Health and Nutrition Examination Survey. Arch Intern Med. 2011;171(13):1183–91.CrossRefPubMed
23.
go back to reference Aaron KJ, Sanders PW. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc. 2013;88(9):987–95.CrossRefPubMed Aaron KJ, Sanders PW. Role of dietary salt and potassium intake in cardiovascular health and disease: a review of the evidence. Mayo Clin Proc. 2013;88(9):987–95.CrossRefPubMed
25.
go back to reference Alderman MH, Cohen HW. Dietary sodium intake and cardiovascular mortality: controversy resolved? Am J Hypertens. 2012;25(7):727–34.CrossRefPubMed Alderman MH, Cohen HW. Dietary sodium intake and cardiovascular mortality: controversy resolved? Am J Hypertens. 2012;25(7):727–34.CrossRefPubMed
26.
go back to reference Graudal N, Jurgens G, Baslund B, Alderman MH. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am J Hypertens. 2014;27(9):1129–37.CrossRefPubMed Graudal N, Jurgens G, Baslund B, Alderman MH. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am J Hypertens. 2014;27(9):1129–37.CrossRefPubMed
27.
go back to reference van Mierlo LA, Greyling A, Zock PL, Kok FJ, Geleijnse JM. Suboptimal potassium intake and potential impact on population blood pressure. Arch Intern Med. 2010;170(16):1501–2.CrossRefPubMed van Mierlo LA, Greyling A, Zock PL, Kok FJ, Geleijnse JM. Suboptimal potassium intake and potential impact on population blood pressure. Arch Intern Med. 2010;170(16):1501–2.CrossRefPubMed
28.
go back to reference He FJ, MacGregor GA. Beneficial effects of potassium on human health. Physiol Plant. 2008;133(4):725–35.CrossRefPubMed He FJ, MacGregor GA. Beneficial effects of potassium on human health. Physiol Plant. 2008;133(4):725–35.CrossRefPubMed
29.
go back to reference D’Elia L, Barba G, Cappuccio FP, Strazzullo P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J Am Coll Cardiol. 2011;57(10):1210–9.CrossRefPubMed D’Elia L, Barba G, Cappuccio FP, Strazzullo P. Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J Am Coll Cardiol. 2011;57(10):1210–9.CrossRefPubMed
30.
go back to reference O’Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306(20):2229–38.PubMed O’Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306(20):2229–38.PubMed
31.
go back to reference Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens. 2003;17(7):471–80.CrossRefPubMed Geleijnse JM, Kok FJ, Grobbee DE. Blood pressure response to changes in sodium and potassium intake: a metaregression analysis of randomised trials. J Hum Hypertens. 2003;17(7):471–80.CrossRefPubMed
32.
go back to reference Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277(20):1624–32.CrossRefPubMed Whelton PK, He J, Cutler JA, Brancati FL, Appel LJ, Follmann D, et al. Effects of oral potassium on blood pressure. Meta-analysis of randomized controlled clinical trials. JAMA. 1997;277(20):1624–32.CrossRefPubMed
33.
go back to reference Rodrigues SL, Baldo MP, Machado RC, Forechi L, Molina MCB, Mill JG. High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. J Am Soc Hypertens. 2014;8(4):232–8.CrossRefPubMed Rodrigues SL, Baldo MP, Machado RC, Forechi L, Molina MCB, Mill JG. High potassium intake blunts the effect of elevated sodium intake on blood pressure levels. J Am Soc Hypertens. 2014;8(4):232–8.CrossRefPubMed
34.
go back to reference Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose–response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490.CrossRefPubMedPubMedCentral Wang X, Ouyang Y, Liu J, Zhu M, Zhao G, Bao W, et al. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose–response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490.CrossRefPubMedPubMedCentral
35.
go back to reference Hu D, Huang J, Wang Y, Zhang D, Qu Y. Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. Stroke. 2014;45(6):1613–9.CrossRefPubMed Hu D, Huang J, Wang Y, Zhang D, Qu Y. Fruits and vegetables consumption and risk of stroke: a meta-analysis of prospective cohort studies. Stroke. 2014;45(6):1613–9.CrossRefPubMed
36.
go back to reference Doria E, Buonocore D, Focarelli A, Marzatico F. Relationship between human aging muscle and oxidative system pathway. Oxid Med Cell Longev. 2012;2012:830257.CrossRefPubMedPubMedCentral Doria E, Buonocore D, Focarelli A, Marzatico F. Relationship between human aging muscle and oxidative system pathway. Oxid Med Cell Longev. 2012;2012:830257.CrossRefPubMedPubMedCentral
37.
go back to reference Leiba A, Vald A, Peleg E, Shamiss A, Grossman E. Does dietary recall adequately assess sodium, potassium, and calcium intake in hypertensive patients? Nutrition. 2005;21(4):462–6.CrossRefPubMed Leiba A, Vald A, Peleg E, Shamiss A, Grossman E. Does dietary recall adequately assess sodium, potassium, and calcium intake in hypertensive patients? Nutrition. 2005;21(4):462–6.CrossRefPubMed
38.
go back to reference Huang Y, Van Horn L, Tinker LF, Neuhouser ML, Carbone L, Mossavar-Rahmani Y, et al. Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion. Hypertension. 2014;63(2):238–44.CrossRefPubMed Huang Y, Van Horn L, Tinker LF, Neuhouser ML, Carbone L, Mossavar-Rahmani Y, et al. Measurement error corrected sodium and potassium intake estimation using 24-hour urinary excretion. Hypertension. 2014;63(2):238–44.CrossRefPubMed
39.
go back to reference Meyer KA, Harnack LJ, Luepker RV, Zhou X, Jacobs DR, Steffen LM. Twenty-two-year population trends in sodium and potassium consumption: the Minnesota Heart Survey. J Am Heart Assoc. 2013;2(5):e000478.CrossRefPubMedPubMedCentral Meyer KA, Harnack LJ, Luepker RV, Zhou X, Jacobs DR, Steffen LM. Twenty-two-year population trends in sodium and potassium consumption: the Minnesota Heart Survey. J Am Heart Assoc. 2013;2(5):e000478.CrossRefPubMedPubMedCentral
40.
go back to reference Sellen D. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee, WHO technical report series No. 854, vol. 30. Geneva, 1995: WHO; 1998. p. 452. Swiss Fr 71.00. Sellen D. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee, WHO technical report series No. 854, vol. 30. Geneva, 1995: WHO; 1998. p. 452. Swiss Fr 71.00.
41.
go back to reference Stewart AM-JM, Olds T. International standards for anthropometric assessment. Lower Hutt, New Zealand: ISAK; 2001. Stewart AM-JM, Olds T. International standards for anthropometric assessment. Lower Hutt, New Zealand: ISAK; 2001.
43.
go back to reference Moreira P, Santos S, Padrão P, Cordeiro T, Bessa M, Valente H, et al. Food patterns according to sociodemographics, physical activity, sleeping and obesity in Portuguese children. Int J Environ Res Public Health. 2010;7(3):1121–38.CrossRefPubMedPubMedCentral Moreira P, Santos S, Padrão P, Cordeiro T, Bessa M, Valente H, et al. Food patterns according to sociodemographics, physical activity, sleeping and obesity in Portuguese children. Int J Environ Res Public Health. 2010;7(3):1121–38.CrossRefPubMedPubMedCentral
44.
go back to reference Bernstein AM, Willett WC. Trends in 24-h urinary sodium excretion in the United States, 1957–2003: a systematic review. Am J Clin Nutr. 2010;92(5):1172–80.CrossRefPubMedPubMedCentral Bernstein AM, Willett WC. Trends in 24-h urinary sodium excretion in the United States, 1957–2003: a systematic review. Am J Clin Nutr. 2010;92(5):1172–80.CrossRefPubMedPubMedCentral
45.
go back to reference Remer T, Neubert A, Maser-Gluth C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr. 2002;75(3):561–9.PubMed Remer T, Neubert A, Maser-Gluth C. Anthropometry-based reference values for 24-h urinary creatinine excretion during growth and their use in endocrine and nutritional research. Am J Clin Nutr. 2002;75(3):561–9.PubMed
46.
go back to reference Gibney MJ, Lanham-New SA, Cassidy A, Vorster HH. Introduction to human nutrition. John Wiley & Sons; 2009. Gibney MJ, Lanham-New SA, Cassidy A, Vorster HH. Introduction to human nutrition. John Wiley & Sons; 2009.
47.
go back to reference Marques M, Pinho O, Almeida MDV. Manual de quantificação de alimentos.Faculdade de Ciências da Nutrição e Alimentação da U. Porto (FCNAUP). 1996. 1ºEd. Marques M, Pinho O, Almeida MDV. Manual de quantificação de alimentos.Faculdade de Ciências da Nutrição e Alimentação da U. Porto (FCNAUP). 1996. 1ºEd.
48.
go back to reference Rangan A, Flood V, Gill T. Misreporting of energy intake in the 2007 Australian children’s survey: identification, characteristics and impact of misreporters. Nutrients. 2011;3(2):186–99.CrossRefPubMedPubMedCentral Rangan A, Flood V, Gill T. Misreporting of energy intake in the 2007 Australian children’s survey: identification, characteristics and impact of misreporters. Nutrients. 2011;3(2):186–99.CrossRefPubMedPubMedCentral
49.
go back to reference Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39 Suppl 1:5–41.PubMed Schofield WN. Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr. 1985;39 Suppl 1:5–41.PubMed
50.
go back to reference Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, et al. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr. 1991;45(12):569–81.PubMed Goldberg GR, Black AE, Jebb SA, Cole TJ, Murgatroyd PR, Coward WA, et al. Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr. 1991;45(12):569–81.PubMed
51.
go back to reference Livingstone MB, Robson PJ. Measurement of dietary intake in children. Proc Nutr Soc. 2000;59(2):279–93.CrossRefPubMed Livingstone MB, Robson PJ. Measurement of dietary intake in children. Proc Nutr Soc. 2000;59(2):279–93.CrossRefPubMed
52.
go back to reference Nelson M, Black AE, Morris JA, Cole TJ. Between- and within-subject variation in nutrient intake from infancy to old age: estimating the number of days required to rank dietary intakes with desired precision. Am J Clin Nutr. 1989;50(1):155–67.PubMed Nelson M, Black AE, Morris JA, Cole TJ. Between- and within-subject variation in nutrient intake from infancy to old age: estimating the number of days required to rank dietary intakes with desired precision. Am J Clin Nutr. 1989;50(1):155–67.PubMed
53.
go back to reference Torun B, Davies PS, Livingstone MB, Paolisso M, Sackett R, Spurr GB. Energy requirements and dietary energy recommendations for children and adolescents 1 to 18 years old. Eur J Clin Nutr. 1996;50 Suppl 1:S37–80. discussion S80–31.PubMed Torun B, Davies PS, Livingstone MB, Paolisso M, Sackett R, Spurr GB. Energy requirements and dietary energy recommendations for children and adolescents 1 to 18 years old. Eur J Clin Nutr. 1996;50 Suppl 1:S37–80. discussion S80–31.PubMed
54.
go back to reference Sichert-Hellert W, Kersting M, Schoch G. Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss. 1998;37(3):242–51.CrossRefPubMed Sichert-Hellert W, Kersting M, Schoch G. Underreporting of energy intake in 1 to 18 year old German children and adolescents. Z Ernahrungswiss. 1998;37(3):242–51.CrossRefPubMed
55.
go back to reference Montenegro-Bethancourt G, Johner SA, Remer T. Contribution of fruit and vegetable intake to hydration status in schoolchildren. Am J Clin Nutr. 2013;98(4):1103–12.CrossRefPubMed Montenegro-Bethancourt G, Johner SA, Remer T. Contribution of fruit and vegetable intake to hydration status in schoolchildren. Am J Clin Nutr. 2013;98(4):1103–12.CrossRefPubMed
56.
go back to reference WHO. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser. 2003;916:i–viii:1–149. WHO. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser. 2003;916:i–viii:1–149.
57.
go back to reference Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academies Press; 2004. Institute of Medicine, Food and Nutrition Board. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: National Academies Press; 2004.
58.
go back to reference De Santo NG, Dilorio B, Capasso G, Russo F, Stamler J, Stamler R, et al. The urinary sodium/potassium ratio in children from southern Italy living in Cimitile: a case for concern. Int J Pediatr Nephrol. 1987;8(3):153–8.PubMed De Santo NG, Dilorio B, Capasso G, Russo F, Stamler J, Stamler R, et al. The urinary sodium/potassium ratio in children from southern Italy living in Cimitile: a case for concern. Int J Pediatr Nephrol. 1987;8(3):153–8.PubMed
59.
go back to reference Kelishadi R, Gheisari A, Zare N, Farajian S, Shariatinejad K. Salt intake and the association with blood pressure in young Iranian children: first report from the middle East and north Africa. Int J Prev Med. 2013;4(4):475–83.PubMedPubMedCentral Kelishadi R, Gheisari A, Zare N, Farajian S, Shariatinejad K. Salt intake and the association with blood pressure in young Iranian children: first report from the middle East and north Africa. Int J Prev Med. 2013;4(4):475–83.PubMedPubMedCentral
60.
go back to reference Morinaga Y, Tsuchihashi T, Ohta Y, Matsumura K. Salt intake in 3-year-old Japanese children. Hypertens Res. 2011;34(7):836–9.CrossRefPubMed Morinaga Y, Tsuchihashi T, Ohta Y, Matsumura K. Salt intake in 3-year-old Japanese children. Hypertens Res. 2011;34(7):836–9.CrossRefPubMed
61.
go back to reference Bingham SA, Gill C, Welch A, Cassidy A, Runswick SA, Oakes S, et al. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol. 1997;26 Suppl 1:S137–51.CrossRefPubMed Bingham SA, Gill C, Welch A, Cassidy A, Runswick SA, Oakes S, et al. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol. 1997;26 Suppl 1:S137–51.CrossRefPubMed
62.
go back to reference Bingham SA. The use of 24-h urine samples and energy expenditure to validate dietary assessments. Am J Clin Nutr. 1994;59(1 Suppl):227s–31.PubMed Bingham SA. The use of 24-h urine samples and energy expenditure to validate dietary assessments. Am J Clin Nutr. 1994;59(1 Suppl):227s–31.PubMed
63.
go back to reference Jain M, Howe GR, Rohan T. Dietary assessment in epidemiology: comparison on food frequency and a diet history questionnaire with a 7-day food record. Am J Epidemiol. 1996;143(9):953–60.CrossRefPubMed Jain M, Howe GR, Rohan T. Dietary assessment in epidemiology: comparison on food frequency and a diet history questionnaire with a 7-day food record. Am J Epidemiol. 1996;143(9):953–60.CrossRefPubMed
64.
go back to reference Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: National Academies Press; 2005. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (Macronutrients). Washington, DC: National Academies Press; 2005.
65.
go back to reference WHO. Fats and fatty acids in human nutrition: report of an expert consultation. FAO Food Nutr Pap. 2010;91:1–166. WHO. Fats and fatty acids in human nutrition: report of an expert consultation. FAO Food Nutr Pap. 2010;91:1–166.
66.
go back to reference Valente H, Padez C, Mourão I, Rosado V, Moreira P. Prevalência de inadequação nutricional em crianças portuguesas. Acta Med Port. 2010;23(3):365–70.PubMed Valente H, Padez C, Mourão I, Rosado V, Moreira P. Prevalência de inadequação nutricional em crianças portuguesas. Acta Med Port. 2010;23(3):365–70.PubMed
67.
go back to reference Moreira P, Padez C, Mourao I, Rosado V. Dietary calcium and body mass index in Portuguese children. Eur J Clin Nutr. 2005;59(7):861–7.CrossRefPubMed Moreira P, Padez C, Mourao I, Rosado V. Dietary calcium and body mass index in Portuguese children. Eur J Clin Nutr. 2005;59(7):861–7.CrossRefPubMed
68.
go back to reference Kristjansdottir A, Thorsdottir I, De Bourdeaudhuij I, Due P, Wind M, Klepp K-I. Determinants of fruit and vegetable intake among 11-year-old schoolchildren in a country of traditionally low fruit and vegetable consumption. Int J Behav Nutr Phys Act. 2006;3(1):41.CrossRefPubMedPubMedCentral Kristjansdottir A, Thorsdottir I, De Bourdeaudhuij I, Due P, Wind M, Klepp K-I. Determinants of fruit and vegetable intake among 11-year-old schoolchildren in a country of traditionally low fruit and vegetable consumption. Int J Behav Nutr Phys Act. 2006;3(1):41.CrossRefPubMedPubMedCentral
69.
go back to reference WHO. Guideline: sodium intake for adults and children. Geneva: World Health Organization (WHO); 2012. WHO. Guideline: sodium intake for adults and children. Geneva: World Health Organization (WHO); 2012.
Metadata
Title
Potassium urinary excretion and dietary intake: a cross-sectional analysis in 8–10 year-old children
Authors
Ana Catarina Oliveira
Patrícia Padrão
André Moreira
Mariana Pinto
Mafalda Neto
Tânia Santos
Joana Madureira
Eduardo de Oliveira Fernandes
Pedro Graça
João Breda
Pedro Moreira
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2015
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-015-0374-z

Other articles of this Issue 1/2015

BMC Pediatrics 1/2015 Go to the issue