Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Research article

Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters

Authors: Fang Han, Mengdi Li, Pinghui Wei, Jiaonan Ma, Vishal Jhanji, Yan Wang

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

To assess the corneal stress-strain index (SSI), which is a marker for material stiffness and corneal biomechanical parameters, in myopic eyes.

Methods

A total of 1054 myopic patients were included in this study. Corneal visualisation Scheimpflug technology was used to measure the SSI. Corneal biomechanics were assessed using the first and second applanation times (A1-and A2-times); maximum deflection amplitude (DefAmax); deflection area (HCDefArea); the highest concavity peak distance (HC-PD), time (HC-time), and deflection amplitude (HC-DefA); integrated radius (IR); whole eye movement (WEM); stiffness parameter (SP-A1;, biomechanically corrected intraocular pressure (BIOP); and Corvis biomechanical index (CBI). Scheimpflug tomography was used to obtain the mean keratometery (Km) and central corneal thickness (CCT). According to the spherical equivalent (SE) (low myopia: SE ≥ − 3.00D and high myopia: SE ≤ − 6.00D.), the suitable patients were divided into two groups.

Results

The mean SSI value was 0.854 ± 0.004. The SSI had a positive correlation with A1-time ((r = 0.272), HC-time (r = 0.218), WEM (r = 0.288), SP-A1 (r = 0.316), CBI (r = 0.199), CCT (r = 0.125), bIOP (r = 0.230), and SE (r = 0.313) (all p-values<0.01). The SSI had a negative correlation with HCDefA (r = − 0.721), HCDefArea (r = − 0.665), HC-PD(r = − 0.597), IR (r = − 0.555), DefAmax (r = − 0.564), and Km (r = − 0.103) (all p-values<0.01). There were significant differences in SSI (t = 8.960, p<0.01) and IR (t = − 3.509, p<0.01) between the low and high myopia groups.

Conclusions

In different grades of myopia, the SSI values were lower in eyes with higher SEs. It indicates that the mechanical strength of the cornea may be compromised in high myopia. The SSI was positively correlated with the spherical equivalent, and it may provide a new way to study the mechanism of myopia.
Literature
1.
go back to reference Oner V, Tas M, Ozkaya E, Oruc Y. Effect of pathological myopia on biomechanical properties: a study by ocular response analyzer. Int J Ophthalmol. 2015;8(2):365–8.PubMedPubMedCentral Oner V, Tas M, Ozkaya E, Oruc Y. Effect of pathological myopia on biomechanical properties: a study by ocular response analyzer. Int J Ophthalmol. 2015;8(2):365–8.PubMedPubMedCentral
2.
go back to reference Blum M, Täubig K, Gruhn C, Sekundo W, Kunert KS. Five-year results of small incision lenticule extraction (ReLEx SMILE). Br J Ophthalmol. 2016;100(9):1192–5.CrossRef Blum M, Täubig K, Gruhn C, Sekundo W, Kunert KS. Five-year results of small incision lenticule extraction (ReLEx SMILE). Br J Ophthalmol. 2016;100(9):1192–5.CrossRef
3.
go back to reference Tian L, Ko MW, Wang LK, Zhang JY, Li TJ, Huang YF, Zheng YP. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg. 2014;30(11):785–91.CrossRef Tian L, Ko MW, Wang LK, Zhang JY, Li TJ, Huang YF, Zheng YP. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg. 2014;30(11):785–91.CrossRef
4.
go back to reference Qiu K, Zhang R, Wang G, Zhang M. Relationship of corneal hysteresis and optic nerve parameters in healthy myopic subjects. Sci Rep. 2017;7(1):17538–7.CrossRef Qiu K, Zhang R, Wang G, Zhang M. Relationship of corneal hysteresis and optic nerve parameters in healthy myopic subjects. Sci Rep. 2017;7(1):17538–7.CrossRef
5.
go back to reference He M, Wang W, Ding H, Zhong X. Corneal biomechanical properties in high myopia measured by dynamic Scheimpflug imaging technology. Optom Vis Sci. 2017;94(12):1074–80.CrossRef He M, Wang W, Ding H, Zhong X. Corneal biomechanical properties in high myopia measured by dynamic Scheimpflug imaging technology. Optom Vis Sci. 2017;94(12):1074–80.CrossRef
6.
go back to reference Jia X, Yu J, Liao SH, Duan XC. Biomechanics of the sclera and effects on intraocular pressure. Int J Ophthalmol. 2016;9(12):1824–31.PubMedPubMedCentral Jia X, Yu J, Liao SH, Duan XC. Biomechanics of the sclera and effects on intraocular pressure. Int J Ophthalmol. 2016;9(12):1824–31.PubMedPubMedCentral
7.
go back to reference Xu H, Zong Y, Zhai R, Kong X, Jiang C, Sun X. Intereye and intraeye asymmetry analysis of retinal microvascular and neural structure parameters for diagnosis of primary open-angle glaucoma. Eye (Lond). 2019;33(10):1596–605.CrossRef Xu H, Zong Y, Zhai R, Kong X, Jiang C, Sun X. Intereye and intraeye asymmetry analysis of retinal microvascular and neural structure parameters for diagnosis of primary open-angle glaucoma. Eye (Lond). 2019;33(10):1596–605.CrossRef
8.
go back to reference Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7(51):1475–85.CrossRef Elsheikh A, Geraghty B, Rama P, Campanelli M, Meek KM. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface. 2010;7(51):1475–85.CrossRef
9.
go back to reference Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.CrossRef Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.CrossRef
10.
go back to reference Wei S, Sun Y, Li S, Hu J, Yang X, Lin C, Cao K, Du J, Guo J, Li H, et al. Refractive errors in university students in Central China: the Anyang University Students Eye Study. Invest Ophthalmol Vis Sci. 2018;59(11):4691–700.CrossRef Wei S, Sun Y, Li S, Hu J, Yang X, Lin C, Cao K, Du J, Guo J, Li H, et al. Refractive errors in university students in Central China: the Anyang University Students Eye Study. Invest Ophthalmol Vis Sci. 2018;59(11):4691–700.CrossRef
11.
go back to reference Hung GK, Mahadas K, Mohammad F. Eye growth and myopia development: unifying theory and Matlab model. Comput Biol Med. 2016;70:106–18.CrossRef Hung GK, Mahadas K, Mohammad F. Eye growth and myopia development: unifying theory and Matlab model. Comput Biol Med. 2016;70:106–18.CrossRef
12.
go back to reference Lee MW, Kim JM, Shin YI, Jo YJ, Kim JY. Longitudinal changes in peripapillary retinal nerve fiber layer thickness in high myopia: a prospective, observational study. Ophthalmology. 2019;126(4):522–8.CrossRef Lee MW, Kim JM, Shin YI, Jo YJ, Kim JY. Longitudinal changes in peripapillary retinal nerve fiber layer thickness in high myopia: a prospective, observational study. Ophthalmology. 2019;126(4):522–8.CrossRef
13.
go back to reference Leung TW, Lam AK, Kee CS. Corneal shapes of Chinese emmetropes and myopic astigmats aged 10 to 45 years. Optom Vis Sci. 2013;90(11):1259–66.CrossRef Leung TW, Lam AK, Kee CS. Corneal shapes of Chinese emmetropes and myopic astigmats aged 10 to 45 years. Optom Vis Sci. 2013;90(11):1259–66.CrossRef
14.
go back to reference Cohen Y, Belkin M, Yehezkel O, Avni I, Polat U. Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light. Vis Res. 2008;48(21):2329–35.CrossRef Cohen Y, Belkin M, Yehezkel O, Avni I, Polat U. Light intensity modulates corneal power and refraction in the chick eye exposed to continuous light. Vis Res. 2008;48(21):2329–35.CrossRef
15.
go back to reference Rucker F, Britton S, Spatcher M, Hanowsky S. Blue light protects against temporal frequency sensitive refractive changes. Invest Ophthalmol Vis Sci. 2015;56(10):6121–31.CrossRef Rucker F, Britton S, Spatcher M, Hanowsky S. Blue light protects against temporal frequency sensitive refractive changes. Invest Ophthalmol Vis Sci. 2015;56(10):6121–31.CrossRef
16.
go back to reference Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40(3):282–9.CrossRef Wong YZ, Lam AK. The roles of cornea and axial length in corneal hysteresis among emmetropes and high myopes: a pilot study. Curr Eye Res. 2015;40(3):282–9.CrossRef
17.
go back to reference Eliasy A, Chen KJ, Vinciguerra R, Maklad O, Vinciguerra P, Ambrósio R Jr, Roberts CJ, Elsheikh A. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res. 2018;175:98–102.CrossRef Eliasy A, Chen KJ, Vinciguerra R, Maklad O, Vinciguerra P, Ambrósio R Jr, Roberts CJ, Elsheikh A. Ex-vivo experimental validation of biomechanically-corrected intraocular pressure measurements on human eyes using the CorVis ST. Exp Eye Res. 2018;175:98–102.CrossRef
18.
go back to reference Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40(6):862–9.CrossRef Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40(6):862–9.CrossRef
19.
go back to reference Bueno-Gimeno I, España-Gregori E, Gene-Sampedro A, Lanzagorta-Aresti A, Piñero-Llorens DP. Relationship among corneal biomechanics, refractive error, and axial length. Optom Vis Sci. 2014;91(5):507–13.CrossRef Bueno-Gimeno I, España-Gregori E, Gene-Sampedro A, Lanzagorta-Aresti A, Piñero-Llorens DP. Relationship among corneal biomechanics, refractive error, and axial length. Optom Vis Sci. 2014;91(5):507–13.CrossRef
20.
go back to reference Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vis Res. 2008;48(21):2167–71.CrossRef Shen M, Fan F, Xue A, Wang J, Zhou X, Lu F. Biomechanical properties of the cornea in high myopia. Vis Res. 2008;48(21):2167–71.CrossRef
21.
go back to reference Ha A, Kim YK, Baek SU, Park KH, Jeoung JW. Optic disc microhemorrhage in primary open-angle glaucoma: clinical implications for visual field progression. Invest Ophthalmol Vis Sci. 2019;60(6):1824–32.CrossRef Ha A, Kim YK, Baek SU, Park KH, Jeoung JW. Optic disc microhemorrhage in primary open-angle glaucoma: clinical implications for visual field progression. Invest Ophthalmol Vis Sci. 2019;60(6):1824–32.CrossRef
22.
go back to reference Lim L, Gazzard G, Chan YH, Fong A, Kotecha A, Sim EL, Tan D, Tong L, Saw SM. Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. Investig Ophthalmol Vis Sci. 2008;49(9):3852–7.CrossRef Lim L, Gazzard G, Chan YH, Fong A, Kotecha A, Sim EL, Tan D, Tong L, Saw SM. Cornea biomechanical characteristics and their correlates with refractive error in Singaporean children. Investig Ophthalmol Vis Sci. 2008;49(9):3852–7.CrossRef
23.
go back to reference Kamiya K, Hagishima M, Fujimura F, Shimizu K. Factors affecting corneal hysteresis in normal eyes. Graefes Arch Clin Exp Ophthalmol. 2008;246(10):1491–4.CrossRef Kamiya K, Hagishima M, Fujimura F, Shimizu K. Factors affecting corneal hysteresis in normal eyes. Graefes Arch Clin Exp Ophthalmol. 2008;246(10):1491–4.CrossRef
24.
go back to reference Wang J, Li Y, Jin Y, Yang X, Zhao C, Long Q. Corneal biomechanical properties in myopic eyes measured by a dynamic Scheimpflug analyzer. J Ophthalmol. 2015;2015:161869.PubMedPubMedCentral Wang J, Li Y, Jin Y, Yang X, Zhao C, Long Q. Corneal biomechanical properties in myopic eyes measured by a dynamic Scheimpflug analyzer. J Ophthalmol. 2015;2015:161869.PubMedPubMedCentral
25.
go back to reference Çevik SG, Kıvanç SA, Akova-Budak B, Tok-Çevik M. Relationship among corneal biomechanics, anterior segment parameters, and geometric corneal parameters. J Ophthalmol. 2016;2016:8418613.CrossRef Çevik SG, Kıvanç SA, Akova-Budak B, Tok-Çevik M. Relationship among corneal biomechanics, anterior segment parameters, and geometric corneal parameters. J Ophthalmol. 2016;2016:8418613.CrossRef
26.
go back to reference Ma J, Wang Y, Hao W, Jhanji V. Comparative analysis of biomechanically corrected intraocular pressure with corneal visualization Scheimpflug technology versus conventional noncontact intraocular pressure. Int Ophthalmol. 2020;40(1):117–24.CrossRef Ma J, Wang Y, Hao W, Jhanji V. Comparative analysis of biomechanically corrected intraocular pressure with corneal visualization Scheimpflug technology versus conventional noncontact intraocular pressure. Int Ophthalmol. 2020;40(1):117–24.CrossRef
27.
go back to reference Vinciguerra R, Ambrosio RJ, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P. Detection of Keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10.CrossRef Vinciguerra R, Ambrosio RJ, Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P. Detection of Keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–10.CrossRef
28.
go back to reference Shah S, Laiquzzaman M, Yeung I, Pan X, Roberts C. The use of the ocular response analyser to determine corneal hysteresis in eyes before and after excimer laser refractive surgery. Cont Lens Anterior Eye. 2009;32(3):123–8.CrossRef Shah S, Laiquzzaman M, Yeung I, Pan X, Roberts C. The use of the ocular response analyser to determine corneal hysteresis in eyes before and after excimer laser refractive surgery. Cont Lens Anterior Eye. 2009;32(3):123–8.CrossRef
29.
go back to reference Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A. Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater. 2012;16:181–91.CrossRef Geraghty B, Jones SW, Rama P, Akhtar R, Elsheikh A. Age-related variations in the biomechanical properties of human sclera. J Mech Behav Biomed Mater. 2012;16:181–91.CrossRef
30.
go back to reference Ali NQ, Patel DV, McGhee CN. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55(6):3651–9.CrossRef Ali NQ, Patel DV, McGhee CN. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55(6):3651–9.CrossRef
Metadata
Title
Effect of biomechanical properties on myopia: a study of new corneal biomechanical parameters
Authors
Fang Han
Mengdi Li
Pinghui Wei
Jiaonan Ma
Vishal Jhanji
Yan Wang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01729-x

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue