Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Glaucoma | Research article

Consistency between optical coherence tomography and humphrey visual field for evaluating glaucomatous defects in high myopic eyes

Authors: Wen Wen, Yuqiu Zhang, Ting Zhang, Xinghuai Sun

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

The study is to investigate the influence of high myopia on the consistency between optical coherence tomography (OCT) and visual field in primary open-angle glaucoma (POAG).

Methods

We enrolled 37 patients with POAG with high myopia (POAG-HM group), 27 patients with POAG without high myopia (POAG group), and 29 controls with high myopia (HM group). All subjects underwent Humphrey perimetry (30–2 and 10–2 algorithms). The peripapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses were measured using Cirrus HD-OCT. Spearman’s rank correlation analysis was used to determine correlations between OCT and perimetric parameters. Agreement was analyzed by cross-classification and weighted κ statistics.

Results

In POAG group, the cross-classification analysis showed strong agreement between the inferior temporal GCIPL thickness and the mean sensitivity (MS) of 10–2 algorithms (κ = 0.5447, P = 0.0048), and good agreement between the superior and inferior RNFL thicknesses and 30–2 MS (κ = 0.4407 and 0.4815; P < 0.05). In the POAG-HM group, only the inferior temporal GCIPL thickness showed good agreement with 10–2 MS (κ = 0.3155, P = 0.0289) and none of the RNFL sectors were in good agreement with the corresponding MS.

Conclusions

In POAG patients with high myopia, changes in macular measurements were in accordance with visual field defects, and RNFL thickness did not consistently decline with visual field defects due to the effects of high myopia. This study suggests that during diagnosis and follow-up of glaucoma with high myopia, more attention need to be focused on structure and functional defects in macular areas.
Literature
1.
go back to reference Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–46.CrossRef Quigley HA, Addicks EM, Green WR. Optic nerve damage in human glaucoma. III. Quantitative correlation of nerve fiber loss and visual field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch Ophthalmol. 1982;100:135–46.CrossRef
2.
go back to reference Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.CrossRef Quigley HA, Dunkelberger GR, Green WR. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. Am J Ophthalmol. 1989;107:453–64.CrossRef
3.
go back to reference Bowd C, Zangwill LM, Medeiros FA, et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2006;47:2889–95.CrossRef Bowd C, Zangwill LM, Medeiros FA, et al. Structure-function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest Ophthalmol Vis Sci. 2006;47:2889–95.CrossRef
4.
go back to reference Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464–70.CrossRef Wollstein G, Schuman JS, Price LL, et al. Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch Ophthalmol. 2005;123:464–70.CrossRef
5.
go back to reference Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22.CrossRef Leung CK, Cheung CY, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22.CrossRef
6.
go back to reference Leung CK, Chiu V, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.CrossRef Leung CK, Chiu V, Weinreb RN, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a comparison between spectral-domain and time-domain optical coherence tomography. Ophthalmology. 2011;118:1558–62.CrossRef
7.
go back to reference Tenkumo K, Hirooka K, Baba T, Nitta E, Sato S, Shiraga F. Evaluation of relationship between retinal nerve fiber layer thickness progression and visual field progression in patients with glaucoma. Jpn J Ophthalmol. 2013;57:451–6.CrossRef Tenkumo K, Hirooka K, Baba T, Nitta E, Sato S, Shiraga F. Evaluation of relationship between retinal nerve fiber layer thickness progression and visual field progression in patients with glaucoma. Jpn J Ophthalmol. 2013;57:451–6.CrossRef
8.
go back to reference Bambo MP, Guerri N, Ferrandez B, et al. Evaluation of the macular ganglion cell-inner Plexiform layer and the Circumpapillary retinal nerve Fiber layer in early to severe stages of Glaucoma: correlation with central visual function and visual field indexes. Ophthalmic Res. 2017;57:216–23. Bambo MP, Guerri N, Ferrandez B, et al. Evaluation of the macular ganglion cell-inner Plexiform layer and the Circumpapillary retinal nerve Fiber layer in early to severe stages of Glaucoma: correlation with central visual function and visual field indexes. Ophthalmic Res. 2017;57:216–23.
9.
go back to reference Na JH, Kook MS, Lee Y, Baek S. Structure-function relationship of the macular visual field sensitivity and the ganglion cell complex thickness in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:5044–51.CrossRef Na JH, Kook MS, Lee Y, Baek S. Structure-function relationship of the macular visual field sensitivity and the ganglion cell complex thickness in glaucoma. Invest Ophthalmol Vis Sci. 2012;53:5044–51.CrossRef
10.
go back to reference Casson RJ, Gupta A, Newland HS, et al. Risk factors for primary open-angle glaucoma in a Burmese population: the Meiktila eye study. Clin Exp Ophthalmol. 2007;35:739–44.CrossRef Casson RJ, Gupta A, Newland HS, et al. Risk factors for primary open-angle glaucoma in a Burmese population: the Meiktila eye study. Clin Exp Ophthalmol. 2007;35:739–44.CrossRef
11.
go back to reference Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains eye study. Ophthalmology. 1999;106:2010–5.CrossRef Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains eye study. Ophthalmology. 1999;106:2010–5.CrossRef
12.
go back to reference Zhang Y, Wen W, Sun X. Comparison of several parameters in two optical coherence tomography Systems for Detecting Glaucomatous Defects in high myopia. Invest Ophthalmol Vis Sci. 2016;57:4910–5.CrossRef Zhang Y, Wen W, Sun X. Comparison of several parameters in two optical coherence tomography Systems for Detecting Glaucomatous Defects in high myopia. Invest Ophthalmol Vis Sci. 2016;57:4910–5.CrossRef
13.
go back to reference Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–15.CrossRef Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology. 2000;107:1809–15.CrossRef
14.
go back to reference Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A. Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol. 2008;126:1500–6.CrossRef Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A. Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch Ophthalmol. 2008;126:1500–6.CrossRef
15.
go back to reference Kim S, Lee JY, Kim SO, Kook MS. Macular structure-function relationship at various spatial locations in glaucoma. Br J Ophthalmol. 2015;99:1412–8.CrossRef Kim S, Lee JY, Kim SO, Kook MS. Macular structure-function relationship at various spatial locations in glaucoma. Br J Ophthalmol. 2015;99:1412–8.CrossRef
16.
go back to reference Higashide T, Ohkubo S, Hangai M, et al. Influence of clinical factors and magnification correction on Normal thickness profiles of macular retinal layers using optical coherence tomography. PLoS One. 2016;11(1):e0147782.CrossRef Higashide T, Ohkubo S, Hangai M, et al. Influence of clinical factors and magnification correction on Normal thickness profiles of macular retinal layers using optical coherence tomography. PLoS One. 2016;11(1):e0147782.CrossRef
17.
go back to reference Odell D, Dubis A, Lever J, et al. Assessing errors inherent in OCT-derived macular thickness maps. J Ophthalmol. 2011;2011:692574.CrossRef Odell D, Dubis A, Lever J, et al. Assessing errors inherent in OCT-derived macular thickness maps. J Ophthalmol. 2011;2011:692574.CrossRef
18.
go back to reference Bedggood P, Mukherjee S, Nguyen B, Turpin A, McKendrick A. Geometry of the retinal nerve fibers from Emmetropia through to high myopia at both the temporal raphe and optic nerve. Invest Ophthalmol Vis Sci. 2019;60(14):4896–903.CrossRef Bedggood P, Mukherjee S, Nguyen B, Turpin A, McKendrick A. Geometry of the retinal nerve fibers from Emmetropia through to high myopia at both the temporal raphe and optic nerve. Invest Ophthalmol Vis Sci. 2019;60(14):4896–903.CrossRef
19.
go back to reference Wang WW, Wang HZ, Liu JR, et al. Diagnostic ability of ganglion cell complex thickness to detect Glaucoma in high myopia eyes by Fourier domain optical coherence tomography. Int J Ophthaloml. 2018;11:791–6. Wang WW, Wang HZ, Liu JR, et al. Diagnostic ability of ganglion cell complex thickness to detect Glaucoma in high myopia eyes by Fourier domain optical coherence tomography. Int J Ophthaloml. 2018;11:791–6.
20.
go back to reference Tan O, Li G, Lu AT, Varma R, Huang D, Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115:949–56.CrossRef Tan O, Li G, Lu AT, Varma R, Huang D, Advanced Imaging for Glaucoma Study Group. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. Ophthalmology. 2008;115:949–56.CrossRef
21.
go back to reference Fang Y, Zhang HQ, Qiao QH, et al. Effectiveness of Glaucoma diagnostic parameters from spectral domain-optical coherence tomography of myopic patients. Chin Med J. 2018;131:1819–26.CrossRef Fang Y, Zhang HQ, Qiao QH, et al. Effectiveness of Glaucoma diagnostic parameters from spectral domain-optical coherence tomography of myopic patients. Chin Med J. 2018;131:1819–26.CrossRef
22.
go back to reference Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain opticalcoherencetomography. InvestOphthalmolVisSci. 2011;52:1098–102. Shoji T, Sato H, Ishida M, Takeuchi M, Chihara E. Assessment of glaucomatous changes in subjects with high myopia using spectral domain opticalcoherencetomography. InvestOphthalmolVisSci. 2011;52:1098–102.
23.
go back to reference Shoji T, Nagaoka Y, Sato H, Chihara E. Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012;250:1843–9.CrossRef Shoji T, Nagaoka Y, Sato H, Chihara E. Impact of high myopia on the performance of SD-OCT parameters to detect glaucoma. Graefes Arch Clin Exp Ophthalmol. 2012;250:1843–9.CrossRef
24.
go back to reference Hung KC, Wu PC, Poon YC, et al. Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia. Optom Vis Sci. 2016;93:126–35.CrossRef Hung KC, Wu PC, Poon YC, et al. Macular Diagnostic Ability in OCT for Assessing Glaucoma in High Myopia. Optom Vis Sci. 2016;93:126–35.CrossRef
25.
go back to reference Kansal V, Armstrong J, Pintwala R, Hutnik C. Optical coherence tomography for Glaucoma diagnosis: An evidence based meta-analysis. PLoS One. 2018;13:e0190621.CrossRef Kansal V, Armstrong J, Pintwala R, Hutnik C. Optical coherence tomography for Glaucoma diagnosis: An evidence based meta-analysis. PLoS One. 2018;13:e0190621.CrossRef
27.
go back to reference Shin HY, Park HY, Jung KI, Park CK. Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis. Invest Ophthalmol Vis Sci. 2013;54:7344–53.CrossRef Shin HY, Park HY, Jung KI, Park CK. Comparative study of macular ganglion cell-inner plexiform layer and peripapillary retinal nerve fiber layer measurement: structure-function analysis. Invest Ophthalmol Vis Sci. 2013;54:7344–53.CrossRef
28.
go back to reference Bowd C, Zangwill LM, Weinreb RN. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes. Arch Ophthalmol. 2003;121:961–6.CrossRef Bowd C, Zangwill LM, Weinreb RN. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes. Arch Ophthalmol. 2003;121:961–6.CrossRef
29.
go back to reference Leung CK, Chong KK, Chan WM, et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.CrossRef Leung CK, Chong KK, Chan WM, et al. Comparative study of retinal nerve fiber layer measurement by StratusOCT and GDx VCC, II: structure/function regression analysis in glaucoma. Invest Ophthalmol Vis Sci. 2005;46:3702–11.CrossRef
30.
go back to reference Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.CrossRef Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.CrossRef
31.
go back to reference Schlottmann P, Cilla S, Greenfield D, et al. Relationship between visual field sensitivity and retinal nerve Fiber layer thickness as measured by scanning laser Polarimetry. Invest Ophthalmol Vis Sci. 2004;45(6):1823–9.CrossRef Schlottmann P, Cilla S, Greenfield D, et al. Relationship between visual field sensitivity and retinal nerve Fiber layer thickness as measured by scanning laser Polarimetry. Invest Ophthalmol Vis Sci. 2004;45(6):1823–9.CrossRef
32.
go back to reference Ogawa S, Tanabe Y, Itoh Y, et al. Association between combined structure function index and Glaucoma severity. J Ophthalomogy. 2019;2019:9414675. Ogawa S, Tanabe Y, Itoh Y, et al. Association between combined structure function index and Glaucoma severity. J Ophthalomogy. 2019;2019:9414675.
Metadata
Title
Consistency between optical coherence tomography and humphrey visual field for evaluating glaucomatous defects in high myopic eyes
Authors
Wen Wen
Yuqiu Zhang
Ting Zhang
Xinghuai Sun
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Glaucoma
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01724-2

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue