Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Angiography | Research article

Evaluation of retinal and choroidal variations in thyroid-associated ophthalmopathy using optical coherence tomography angiography

Authors: Lanchu Yu, Qin Jiao, Yu Cheng, Yanji Zhu, Zhongjing Lin, Xi Shen

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

To investigate the difference in retinal nerve fiber layer (RNFL) thickness, choroidal thickness (CT) and superficial retinal vessels between thyroid-associated ophthalmopathy (TAO) patients and healthy controls. To identify the potential influencing factors for these parameters and evaluate their diagnostic abilities in TAO.

Methods

Twenty active TAO patients, 33 inactive TAO patients and 29 healthy participants were enrolled. TAO patients were divided according to the clinical activity score (CAS). RNFL thickness and CT were measured by HD-OCT, while foveal avascular zone (FAZ), vascular density and perfusion density were measured by optical coherence tomography angiography (OCTA). SPSS software was used for statistical analysis.

Results

Active TAO patients had thinner RNFL thickness than the other two groups (P < 0.001, P < 0.001). Both active and inactive TAO patients had significantly higher CT in the macular region (all P < 0.05). The FAZ area in the active TAO group was significantly larger than the other two groups (P = 0.045, P = 0.001). The inactive TAO group had significantly higher vascular density than the other two groups (all P < 0.05). With regard to the perfusion density, significant differences were observed in the temporal and inferior areas (P = 0.045, P = 0.001), as well as the average values (P = 0.032). The FAZ area was positively correlated with intraocular pressure (r = 0.274, P = 0.013), while it was negatively correlated with axial length (r = − 0.344, P = 0.002). The vascular density and perfusion density were not significantly correlated with different clinical variables (all P > 0.05). The AUC analysis indicated these parameters also exhibited a significant discriminatory power in TAO diagnosis.

Conclusions

TAO patients had significant variations in RNFL thickness, choroidal thickness, FAZ area and superficial retinal vessels. These parameters appeared to be potential adjuncts in the evaluation of TAO patients.
Literature
1.
2.
go back to reference Maheshwari R, Weis E. Thyroid associated orbitopathy. Indian J Ophthalmol. 2012;60(2):87–93.CrossRef Maheshwari R, Weis E. Thyroid associated orbitopathy. Indian J Ophthalmol. 2012;60(2):87–93.CrossRef
3.
go back to reference Iyer S, Bahn R. Immunopathogenesis of graves’ ophthalmopathy: the role of the TSH receptor. Best Pract Res Clin Endocrinol Metab. 2012;26(3):281–9.CrossRef Iyer S, Bahn R. Immunopathogenesis of graves’ ophthalmopathy: the role of the TSH receptor. Best Pract Res Clin Endocrinol Metab. 2012;26(3):281–9.CrossRef
4.
go back to reference McAlinden C. An overview of thyroid eye disease. Eye Vis (Lond). 2014;1:1–9.CrossRef McAlinden C. An overview of thyroid eye disease. Eye Vis (Lond). 2014;1:1–9.CrossRef
5.
go back to reference Perri P, Campa C, Costagliola C, Incorvaia C, D’Angelo S, Sebastiani A. Increased retinal blood flow in patients with active graves’ ophthalmopathy. Curr Eye Res. 2007;32(11):985–90.CrossRef Perri P, Campa C, Costagliola C, Incorvaia C, D’Angelo S, Sebastiani A. Increased retinal blood flow in patients with active graves’ ophthalmopathy. Curr Eye Res. 2007;32(11):985–90.CrossRef
6.
go back to reference Çalışkan S, Acar M, Gurdal C. Choroidal thickness in patients with graves’ ophthalmopathy. Curr Eye Res. 2017;42(3):484–90.CrossRef Çalışkan S, Acar M, Gurdal C. Choroidal thickness in patients with graves’ ophthalmopathy. Curr Eye Res. 2017;42(3):484–90.CrossRef
7.
go back to reference Sen E, Berker D, Elgin U, Tutuncu Y, Ozturk F, Guler S. Comparison of optic disc topography in the cases with graves’ disease and healthy controls. J Glaucoma. 2012;21(9):586–9.CrossRef Sen E, Berker D, Elgin U, Tutuncu Y, Ozturk F, Guler S. Comparison of optic disc topography in the cases with graves’ disease and healthy controls. J Glaucoma. 2012;21(9):586–9.CrossRef
8.
go back to reference Victores AJ, Takashima M. Thyroid eye disease: optic neuropathy and orbital decompression. Int Ophthalmol Clin. 2016;56(1):69–79.CrossRef Victores AJ, Takashima M. Thyroid eye disease: optic neuropathy and orbital decompression. Int Ophthalmol Clin. 2016;56(1):69–79.CrossRef
9.
go back to reference Walasik-Szemplińska D, Pauk-Domańska M, Sanocka U, Sudoł-Szopińska I. Doppler imaging of orbital vessels in the assessment of the activity and severity of thyroid-associated orbitopathy. J Ultrason. 2015;15(63):388–97.CrossRef Walasik-Szemplińska D, Pauk-Domańska M, Sanocka U, Sudoł-Szopińska I. Doppler imaging of orbital vessels in the assessment of the activity and severity of thyroid-associated orbitopathy. J Ultrason. 2015;15(63):388–97.CrossRef
10.
go back to reference Sayin O, Yeter V, Ariturk N. Optic disc, macula, and retinal nerve fiber layer measurements obtained by OCT in thyroid-associated ophthalmopathy. J Ophthalmol. 2016;2016:9452687.CrossRef Sayin O, Yeter V, Ariturk N. Optic disc, macula, and retinal nerve fiber layer measurements obtained by OCT in thyroid-associated ophthalmopathy. J Ophthalmol. 2016;2016:9452687.CrossRef
11.
go back to reference Yu N, Zhang Y, Kang L, Gao Y, Zhang J, Wu Y. Analysis in choroidal thickness in patients with graves’ ophthalmopathy using spectral-domain optical coherence tomography. J Ophthalmol. 2018;2018:3529395.PubMedPubMedCentral Yu N, Zhang Y, Kang L, Gao Y, Zhang J, Wu Y. Analysis in choroidal thickness in patients with graves’ ophthalmopathy using spectral-domain optical coherence tomography. J Ophthalmol. 2018;2018:3529395.PubMedPubMedCentral
12.
go back to reference Del Noce C, Vagge A, Nicolò M, Traverso CE. Evaluation of choroidal thickness and choroidal vascular blood flow in patients with thyroid-associated orbitopathy (TAO) using SD-OCT and Angio-OCT. Graefes Arch Clin Exp Ophthalmol. 2020;258(5):1103–7.CrossRef Del Noce C, Vagge A, Nicolò M, Traverso CE. Evaluation of choroidal thickness and choroidal vascular blood flow in patients with thyroid-associated orbitopathy (TAO) using SD-OCT and Angio-OCT. Graefes Arch Clin Exp Ophthalmol. 2020;258(5):1103–7.CrossRef
13.
go back to reference Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6.CrossRef Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6.CrossRef
14.
go back to reference Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):211–23.CrossRef Coscas F, Sellam A, Glacet-Bernard A, Jung C, Goudot M, Miere A, et al. Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(9):211–23.CrossRef
15.
go back to reference Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–55.CrossRef Ferrara D, Waheed NK, Duker JS. Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res. 2016;52:130–55.CrossRef
16.
go back to reference Bartalena L, Baldeschi L, Dickinson A, et al. Consensus statement of the European group on graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008;158(3):273–85.CrossRef Bartalena L, Baldeschi L, Dickinson A, et al. Consensus statement of the European group on graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008;158(3):273–85.CrossRef
17.
go back to reference Lin Z, Huang S, Huang P, Guo L, Shen X, Zhong Y. The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography. PLoS One. 2017;12(12):e0189376.CrossRef Lin Z, Huang S, Huang P, Guo L, Shen X, Zhong Y. The diagnostic use of choroidal thickness analysis and its correlation with visual field indices in glaucoma using spectral domain optical coherence tomography. PLoS One. 2017;12(12):e0189376.CrossRef
18.
go back to reference Kim AY, Rodger DC, Shahidzadeh A, Chu Z, Koulisis N, Burkemper B, et al. Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophthalmol. 2016;171(10):101–12.CrossRef Kim AY, Rodger DC, Shahidzadeh A, Chu Z, Koulisis N, Burkemper B, et al. Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophthalmol. 2016;171(10):101–12.CrossRef
19.
go back to reference Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2016;101(1):16–20.CrossRef Koustenis A Jr, Harris A, Gross J, Januleviciene I, Shah A, Siesky B. Optical coherence tomography angiography: an overview of the technology and an assessment of applications for clinical research. Br J Ophthalmol. 2016;101(1):16–20.CrossRef
20.
go back to reference Forte R, Bonavolontà P, Vassallo P. Evaluation of retinal nerve fiber layer with optic nerve tracking optical coherence tomography in thyroid-associated orbitopathy. Ophthalmologica. 2010;224(2):116–21.CrossRef Forte R, Bonavolontà P, Vassallo P. Evaluation of retinal nerve fiber layer with optic nerve tracking optical coherence tomography in thyroid-associated orbitopathy. Ophthalmologica. 2010;224(2):116–21.CrossRef
21.
go back to reference Wei YH, Chi MC, Liao SL. Predictability of visual function and nerve fiber layer thickness by cross-sectional areas of extraocular muscles in graves ophthalmopathy. Am J Ophthalmol. 2011;151(5):901–6.CrossRef Wei YH, Chi MC, Liao SL. Predictability of visual function and nerve fiber layer thickness by cross-sectional areas of extraocular muscles in graves ophthalmopathy. Am J Ophthalmol. 2011;151(5):901–6.CrossRef
22.
go back to reference Özkan B, Koçer ÇA, Altintaş Ö, Karabaş L, Acar AZ, Yüksel N. Choroidal changes observed with enhanced depth imaging optical coherence tomography in patients with mild graves orbitopathy. Eye (Lond). 2016;30(7):917–24.CrossRef Özkan B, Koçer ÇA, Altintaş Ö, Karabaş L, Acar AZ, Yüksel N. Choroidal changes observed with enhanced depth imaging optical coherence tomography in patients with mild graves orbitopathy. Eye (Lond). 2016;30(7):917–24.CrossRef
23.
go back to reference Konuk O, Onaran Z, Ozhan Oktar S, Yucel C, Unal M. Intraocular pressure and superior ophthalmic vein velocity in graves’ orbitopathy: relation with clinical features. Graefes Arch Clin Exp Ophthalmol. 2009;247(11):1555–9.CrossRef Konuk O, Onaran Z, Ozhan Oktar S, Yucel C, Unal M. Intraocular pressure and superior ophthalmic vein velocity in graves’ orbitopathy: relation with clinical features. Graefes Arch Clin Exp Ophthalmol. 2009;247(11):1555–9.CrossRef
24.
go back to reference Jabbar A, Pingitore A, Pearce SH, Zaman A. Lervasi G, Razvi S. thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14(1):39–55.CrossRef Jabbar A, Pingitore A, Pearce SH, Zaman A. Lervasi G, Razvi S. thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14(1):39–55.CrossRef
25.
go back to reference Nesper PL, Fawzi AA. Human parafoveal capillary vascular anatomy and connectivity revealed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2018;59(10):3858–67.CrossRef Nesper PL, Fawzi AA. Human parafoveal capillary vascular anatomy and connectivity revealed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2018;59(10):3858–67.CrossRef
26.
go back to reference Borrelli E, Sadda SR, Uji A, Querques G. Pearls and pitfalls of optical coherence tomography angiography imaging: a review. Ophthalmol Therapy. 2019;8(2):215–26.CrossRef Borrelli E, Sadda SR, Uji A, Querques G. Pearls and pitfalls of optical coherence tomography angiography imaging: a review. Ophthalmol Therapy. 2019;8(2):215–26.CrossRef
27.
go back to reference Chua J, Tan B, Ang M, Nongpiur ME, Tan AC, Najjar RP, et al. Future clinical applicability of optical coherence tomography angiography. Clin Exp Optom. 2019;102(3):260–9.CrossRef Chua J, Tan B, Ang M, Nongpiur ME, Tan AC, Najjar RP, et al. Future clinical applicability of optical coherence tomography angiography. Clin Exp Optom. 2019;102(3):260–9.CrossRef
28.
go back to reference Shahlaee A, Pefkianaki M, Hsu J, Ho AC. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;161(1):50–5.CrossRef Shahlaee A, Pefkianaki M, Hsu J, Ho AC. Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol. 2016;161(1):50–5.CrossRef
29.
go back to reference Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780–7.CrossRef Iafe NA, Phasukkijwatana N, Chen X, Sarraf D. Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2016;57(13):5780–7.CrossRef
30.
go back to reference Yu J, Jiang C, Wang X, Zhu L, Gu PP, Xu H, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56(5):3212–7.CrossRef Yu J, Jiang C, Wang X, Zhu L, Gu PP, Xu H, et al. Macular perfusion in healthy Chinese: an optical coherence tomography angiogram study. Invest Ophthalmol Vis Sci. 2015;56(5):3212–7.CrossRef
31.
go back to reference Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci. 2016;57(9):OCT224–34.CrossRef Tan CS, Lim LW, Chow VS, Chay IW, Tan S, Cheong KX, et al. Optical coherence tomography angiography evaluation of the parafoveal vasculature and its relationship with ocular factors. Invest Ophthalmol Vis Sci. 2016;57(9):OCT224–34.CrossRef
32.
go back to reference Ye L, Zhou SS, Yang WL, Bao J, Jiang N, Min YL, et al. Retinal microvasculature alteration in active thyroid-associated ophthalmopathy. Endocr Pract. 2018;24(7):658–67.CrossRef Ye L, Zhou SS, Yang WL, Bao J, Jiang N, Min YL, et al. Retinal microvasculature alteration in active thyroid-associated ophthalmopathy. Endocr Pract. 2018;24(7):658–67.CrossRef
33.
go back to reference Akpolat C, Kurt MM, Yılmaz M, Ordulu F, Evliyaoglu F. Analysis of foveal and parafoveal microvascular density and retinal vessel caliber alteration in inactive graves’ ophthalmopathy. J Ophthalmol. 2020;2020:7643737.CrossRef Akpolat C, Kurt MM, Yılmaz M, Ordulu F, Evliyaoglu F. Analysis of foveal and parafoveal microvascular density and retinal vessel caliber alteration in inactive graves’ ophthalmopathy. J Ophthalmol. 2020;2020:7643737.CrossRef
34.
go back to reference Jamshidian Tehrani M, Mahdizad Z, Kasaei A, Fard MA. Early macular and peripapillary vasculature dropout in active thyroid eye disease. Graefes Arch Clin Exp Ophthalmol. 2019;257(11):2533–40.CrossRef Jamshidian Tehrani M, Mahdizad Z, Kasaei A, Fard MA. Early macular and peripapillary vasculature dropout in active thyroid eye disease. Graefes Arch Clin Exp Ophthalmol. 2019;257(11):2533–40.CrossRef
35.
go back to reference Mihailovic N, Lahme L, Rosenberger F, et al. Altered retinal perfusion in patients with inactive graves ophthalmopathy using optical coherence tomography angiography. Endocr Pract. 2020;26(3):312–7.CrossRef Mihailovic N, Lahme L, Rosenberger F, et al. Altered retinal perfusion in patients with inactive graves ophthalmopathy using optical coherence tomography angiography. Endocr Pract. 2020;26(3):312–7.CrossRef
36.
go back to reference Onaran Z, Konuk O, Oktar SÖ, Yücel C, Unal M. Intraocular pressure lowering effect of orbital decompression is related to increased venous outflow in graves orbitopathy. Curr Eye Res. 2014;39(7):666–72.CrossRef Onaran Z, Konuk O, Oktar SÖ, Yücel C, Unal M. Intraocular pressure lowering effect of orbital decompression is related to increased venous outflow in graves orbitopathy. Curr Eye Res. 2014;39(7):666–72.CrossRef
Metadata
Title
Evaluation of retinal and choroidal variations in thyroid-associated ophthalmopathy using optical coherence tomography angiography
Authors
Lanchu Yu
Qin Jiao
Yu Cheng
Yanji Zhu
Zhongjing Lin
Xi Shen
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
Angiography
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01692-7

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue