Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Research article

Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography

Authors: Baek Hwan Cho, Da Young Lee, Kyung-Ah Park, Sei Yeul Oh, Jong Hak Moon, Ga-In Lee, Hoon Noh, Joon Kyo Chung, Min Chae Kang, Myung Jin Chung

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

It is necessary to consider myopic optic disc tilt as it seriously impacts normal ocular parameters. However, ophthalmologic measurements are within inter-observer variability and time-consuming to get. This study aimed to develop and evaluate deep learning models that automatically recognize a myopic tilted optic disc in fundus photography.

Methods

This study used 937 fundus photographs of patients with normal or myopic tilted disc, collected from Samsung Medical Center between April 2016 and December 2018. We developed an automated computer-aided recognition system for optic disc tilt on color fundus photographs via a deep learning algorithm. We preprocessed all images with two image resizing techniques. GoogleNet Inception-v3 architecture was implemented. The performances of the models were compared with the human examiner’s results. Activation map visualization was qualitatively analyzed using the generalized visualization technique based on gradient-weighted class activation mapping (Grad-CAM++).

Results

Nine hundred thirty-seven fundus images were collected and annotated from 509 subjects. In total, 397 images from eyes with tilted optic discs and 540 images from eyes with non-tilted optic discs were analyzed. We included both eye data of most included patients and analyzed them separately in this study. For comparison, we conducted training using two aspect ratios: the simple resized dataset and the original aspect ratio (AR) preserving dataset, and the impacts of the augmentations for both datasets were evaluated. The constructed deep learning models for myopic optic disc tilt achieved the best results when simple image-resizing and augmentation were used. The results were associated with an area under the receiver operating characteristic curve (AUC) of 0.978 ± 0.008, an accuracy of 0.960 ± 0.010, sensitivity of 0.937 ± 0.023, and specificity of 0.963 ± 0.015. The heatmaps revealed that the model could effectively identify the locations of the optic discs, the superior retinal vascular arcades, and the retinal maculae.

Conclusions

We developed an automated deep learning-based system to detect optic disc tilt. The model demonstrated excellent agreement with the previous clinical criteria, and the results are promising for developing future programs to adjust and identify the effect of optic disc tilt on ophthalmic measurements.
Literature
1.
go back to reference Apple DJ, Rabb MF, Walsh PM. Congenital anomalies of the optic disc. Surv Ophthalmol. 1982;27(1):3–41.PubMedCrossRef Apple DJ, Rabb MF, Walsh PM. Congenital anomalies of the optic disc. Surv Ophthalmol. 1982;27(1):3–41.PubMedCrossRef
3.
go back to reference Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.PubMedCrossRef Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.PubMedCrossRef
4.
go back to reference Pan C-W, Dirani M, Cheng C-Y, Wong T-Y, Saw S-M. The age-specific prevalence of myopia in Asia: a meta-analysis. Optom Vis Sci. 2015;92(3):258–66.PubMedCrossRef Pan C-W, Dirani M, Cheng C-Y, Wong T-Y, Saw S-M. The age-specific prevalence of myopia in Asia: a meta-analysis. Optom Vis Sci. 2015;92(3):258–66.PubMedCrossRef
5.
go back to reference Jonas JB, Dichtl A. Optic disc morphology in myopic primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1997;235(10):627–33.PubMedCrossRef Jonas JB, Dichtl A. Optic disc morphology in myopic primary open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 1997;235(10):627–33.PubMedCrossRef
6.
go back to reference Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 1988;226(6):587–90.PubMedCrossRef Jonas JB, Gusek GC, Naumann GO. Optic disk morphometry in high myopia. Graefes Arch Clin Exp Ophthalmol. 1988;226(6):587–90.PubMedCrossRef
7.
go back to reference Samarawickrama C, Mitchell P, Tong L, Gazzard G, Lim L, Wong T-Y, Saw S-M. Myopia-related optic disc and retinal changes in adolescent children from Singapore. Ophthalmology. 2011;118(10):2050–7.PubMedCrossRef Samarawickrama C, Mitchell P, Tong L, Gazzard G, Lim L, Wong T-Y, Saw S-M. Myopia-related optic disc and retinal changes in adolescent children from Singapore. Ophthalmology. 2011;118(10):2050–7.PubMedCrossRef
8.
go back to reference Hwang YH, Yoo C, Kim YY. Characteristics of peripapillary retinal nerve fiber layer thickness in eyes with myopic optic disc tilt and rotation. J Glaucoma. 2012;21(6):394–400.PubMedCrossRef Hwang YH, Yoo C, Kim YY. Characteristics of peripapillary retinal nerve fiber layer thickness in eyes with myopic optic disc tilt and rotation. J Glaucoma. 2012;21(6):394–400.PubMedCrossRef
9.
go back to reference Law SK, Tamboli DA, Giaconi J, Caprioli J. Characterization of retinal nerve fiber layer in nonglaucomatous eyes with tilted discs. Arch Ophthalmol. 2010;128(1):141–2.PubMedCrossRef Law SK, Tamboli DA, Giaconi J, Caprioli J. Characterization of retinal nerve fiber layer in nonglaucomatous eyes with tilted discs. Arch Ophthalmol. 2010;128(1):141–2.PubMedCrossRef
10.
go back to reference Vuori ML, Mäntyjärvi M. Tilted disc syndrome may mimic false visual field deterioration. Acta Ophthalmol. 2008;86(6):622–5.PubMedCrossRef Vuori ML, Mäntyjärvi M. Tilted disc syndrome may mimic false visual field deterioration. Acta Ophthalmol. 2008;86(6):622–5.PubMedCrossRef
11.
go back to reference Brazitikos PD, Safran AB, Simona F, Zulauf M. Threshold perimetry in tilted disc syndrome. Arch Ophthalmol. 1990;108(12):1698–700.PubMedCrossRef Brazitikos PD, Safran AB, Simona F, Zulauf M. Threshold perimetry in tilted disc syndrome. Arch Ophthalmol. 1990;108(12):1698–700.PubMedCrossRef
12.
go back to reference Shoeibi N, Moghadas Sharif N, Daneshvar R, Ehsaei A. Visual field assessment in high myopia with and without tilted optic disc. Clin Exp Optom. 2017;100(6):690–4.PubMedCrossRef Shoeibi N, Moghadas Sharif N, Daneshvar R, Ehsaei A. Visual field assessment in high myopia with and without tilted optic disc. Clin Exp Optom. 2017;100(6):690–4.PubMedCrossRef
13.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.PubMedCrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, Van Der Laak JA, Van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.PubMedCrossRef
15.
go back to reference Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama. 2016;316(22):2402–10.PubMedCrossRef Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama. 2016;316(22):2402–10.PubMedCrossRef
16.
go back to reference Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200–6.PubMedCrossRef Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, Niemeijer M. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57(13):5200–6.PubMedCrossRef
17.
go back to reference Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama. 2017;318(22):2211–23.PubMedPubMedCentralCrossRef Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. Jama. 2017;318(22):2211–23.PubMedPubMedCentralCrossRef
18.
go back to reference Son J, Shin JY, Kim HD, Jung KH, Park KH, Park SJ. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology. 2020;127(1):85-94. Son J, Shin JY, Kim HD, Jung KH, Park KH, Park SJ. Development and validation of deep learning models for screening multiple abnormal findings in retinal fundus images. Ophthalmology. 2020;127(1):85-94.
19.
go back to reference How AC, Tan GS, Chan Y-H, Wong TT, Seah SK, Foster PJ, Aung T. Population prevalence of tilted and torted optic discs among an adult Chinese population in Singapore: the Tanjong Pagar study. Arch Ophthalmol. 2009;127(7):894–9.PubMedCrossRef How AC, Tan GS, Chan Y-H, Wong TT, Seah SK, Foster PJ, Aung T. Population prevalence of tilted and torted optic discs among an adult Chinese population in Singapore: the Tanjong Pagar study. Arch Ophthalmol. 2009;127(7):894–9.PubMedCrossRef
20.
go back to reference Jonas JB, Kling F, Gründler AE. Optic disc shape, corneal astigmatism, and amblyopia. Ophthalmology. 1997;104(11):1934–7.PubMedCrossRef Jonas JB, Kling F, Gründler AE. Optic disc shape, corneal astigmatism, and amblyopia. Ophthalmology. 1997;104(11):1934–7.PubMedCrossRef
21.
go back to reference Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia. Retina (Philadelphia, Pa). 1992;12(2):127–33.CrossRef Grossniklaus HE, Green WR. Pathologic findings in pathologic myopia. Retina (Philadelphia, Pa). 1992;12(2):127–33.CrossRef
22.
go back to reference Nakazawa M, Kurotaki J, Ruike H. Longterm findings in peripapillary crescent formation in eyes with mild or moderate myopia. Acta Ophthalmol. 2008;86(6):626–9.PubMedCrossRef Nakazawa M, Kurotaki J, Ruike H. Longterm findings in peripapillary crescent formation in eyes with mild or moderate myopia. Acta Ophthalmol. 2008;86(6):626–9.PubMedCrossRef
23.
go back to reference Yasuzumi K, Ohno-Matsui K, Yoshida T, Kojima A, Shimada N, Futagami S, Tokoro T, Mochizuki M. Peripapillary crescent enlargement in highly myopic eyes evaluated by fluorescein and indocyanine green angiography. Br J Ophthalmol. 2003;87(9):1088–90.PubMedPubMedCentralCrossRef Yasuzumi K, Ohno-Matsui K, Yoshida T, Kojima A, Shimada N, Futagami S, Tokoro T, Mochizuki M. Peripapillary crescent enlargement in highly myopic eyes evaluated by fluorescein and indocyanine green angiography. Br J Ophthalmol. 2003;87(9):1088–90.PubMedPubMedCentralCrossRef
24.
go back to reference He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2015;37(9):1904–16.PubMedCrossRef He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern Anal Mach Intell. 2015;37(9):1904–16.PubMedCrossRef
25.
go back to reference Zheng L, Zhao Y, Wang S, Wang J, Tian Q: Good practice in CNN feature transfer. arXiv preprint arXiv:160400133 2016. Zheng L, Zhao Y, Wang S, Wang J, Tian Q: Good practice in CNN feature transfer. arXiv preprint arXiv:160400133 2016.
26.
go back to reference Esmaeili SA, Singh B, Davis LS: Fast-at: fast automatic thumbnail generation using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 2017; 2017: 4622–4630. Esmaeili SA, Singh B, Davis LS: Fast-at: fast automatic thumbnail generation using deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition: 2017; 2017: 4622–4630.
27.
go back to reference Kohavi R: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai: 1995: Montreal, Canada; 1995: 1137–1145. Kohavi R: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Ijcai: 1995: Montreal, Canada; 1995: 1137–1145.
28.
go back to reference Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistics surveys. 2010;4:40–79.CrossRef Arlot S, Celisse A. A survey of cross-validation procedures for model selection. Statistics surveys. 2010;4:40–79.CrossRef
29.
go back to reference Bro R, Smilde AK. Centering and scaling in component analysis. J Chemom. 2003;17(1):16–33.CrossRef Bro R, Smilde AK. Centering and scaling in component analysis. J Chemom. 2003;17(1):16–33.CrossRef
30.
go back to reference Ioffe S, Szegedy C: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167 2015. Ioffe S, Szegedy C: Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167 2015.
31.
go back to reference Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans Nucl Sci. 1997;44(3):1464–8.CrossRef Sola J, Sevilla J. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans Nucl Sci. 1997;44(3):1464–8.CrossRef
32.
go back to reference Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK. A state-of-the-art survey on deep learning theory and architectures. Electronics. 2019;8(3):292.CrossRef Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin MS, Hasan M, Van Essen BC, Awwal AA, Asari VK. A state-of-the-art survey on deep learning theory and architectures. Electronics. 2019;8(3):292.CrossRef
33.
go back to reference Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition: 2016; 2016: 2818–2826. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition: 2016; 2016: 2818–2826.
34.
go back to reference Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems: 2012; 2012: 1097–1105. Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems: 2012; 2012: 1097–1105.
35.
go back to reference Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.CrossRef Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M. Imagenet large scale visual recognition challenge. Int J Comput Vis. 2015;115(3):211–52.CrossRef
36.
go back to reference Agrawal P, Girshick R, Malik J: Analyzing the performance of multilayer neural networks for object recognition. In: European conference on computer vision: 2014: Springer; 2014: 329–344. Agrawal P, Girshick R, Malik J: Analyzing the performance of multilayer neural networks for object recognition. In: European conference on computer vision: 2014: Springer; 2014: 329–344.
37.
go back to reference Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35(5):1285–98.CrossRefPubMed Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, Yao J, Mollura D, Summers RM. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016;35(5):1285–98.CrossRefPubMed
38.
go back to reference Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135(11):1170–6.PubMedPubMedCentralCrossRef Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017;135(11):1170–6.PubMedPubMedCentralCrossRef
39.
go back to reference Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Internal Med. 2013;4(2):627. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Internal Med. 2013;4(2):627.
40.
go back to reference Theodorou-Kanakari A, Karampitianis S, Karageorgou V, Kampourelli E, Kapasakis E, Theodossiadis P, Chatziralli I. Current and emerging treatment modalities for Leber's hereditary optic neuropathy: a review of the literature. Adv Ther. 2018;35(10):1510–8.PubMedPubMedCentralCrossRef Theodorou-Kanakari A, Karampitianis S, Karageorgou V, Kampourelli E, Kapasakis E, Theodossiadis P, Chatziralli I. Current and emerging treatment modalities for Leber's hereditary optic neuropathy: a review of the literature. Adv Ther. 2018;35(10):1510–8.PubMedPubMedCentralCrossRef
41.
go back to reference Christopher M, Belghith A, Bowd C, Proudfoot JA, Goldbaum MH, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM. Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep. 2018;8(1):16685.PubMedPubMedCentralCrossRef Christopher M, Belghith A, Bowd C, Proudfoot JA, Goldbaum MH, Weinreb RN, Girkin CA, Liebmann JM, Zangwill LM. Performance of deep learning architectures and transfer learning for detecting glaucomatous optic neuropathy in fundus photographs. Sci Rep. 2018;8(1):16685.PubMedPubMedCentralCrossRef
42.
go back to reference Kingma DP, Ba J: Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 2014. Kingma DP, Ba J: Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980 2014.
43.
go back to reference He K, Zhang X, Ren S, Sun J: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision: 2015; 2015: 1026–1034. He K, Zhang X, Ren S, Sun J: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision: 2015; 2015: 1026–1034.
44.
go back to reference Glorot X, Bengio Y: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics: 2010; 2010: 249–256. Glorot X, Bengio Y: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the thirteenth international conference on artificial intelligence and statistics: 2010; 2010: 249–256.
45.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Machine Learning Res. 2014;15(1):1929–58. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Machine Learning Res. 2014;15(1):1929–58.
46.
go back to reference Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN: Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV): 2018: IEEE; 2018: 839–847. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN: Grad-cam++: Generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV): 2018: IEEE; 2018: 839–847.
47.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision: 2017; 2017: 618–626. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision: 2017; 2017: 618–626.
48.
go back to reference Montavon G, Samek W, Müller K-R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing. 2018;73:1–15.CrossRef Montavon G, Samek W, Müller K-R. Methods for interpreting and understanding deep neural networks. Digital Signal Processing. 2018;73:1–15.CrossRef
49.
go back to reference Tan NY, Sng CC, Ang M. Myopic optic disc changes and its role in glaucoma. Curr Opin Ophthalmol. 2019;30(2):89–96.PubMedCrossRef Tan NY, Sng CC, Ang M. Myopic optic disc changes and its role in glaucoma. Curr Opin Ophthalmol. 2019;30(2):89–96.PubMedCrossRef
50.
go back to reference Chen W-Y, Liu Y-C, Kira Z, Wang Y-CF, Huang J-B: A closer look at few-shot classification. arXiv preprint arXiv:190404232 2019. Chen W-Y, Liu Y-C, Kira Z, Wang Y-CF, Huang J-B: A closer look at few-shot classification. arXiv preprint arXiv:190404232 2019.
51.
go back to reference Geifman Y, El-Yaniv R: Selectivenet: A deep neural network with an integrated reject option. arXiv preprint arXiv:190109192 2019. Geifman Y, El-Yaniv R: Selectivenet: A deep neural network with an integrated reject option. arXiv preprint arXiv:190109192 2019.
52.
go back to reference Park H-YL, Choi SI, Choi J-A, Park CK. Disc torsion and vertical disc tilt are related to subfoveal scleral thickness in open-angle glaucoma patients with myopia. Invest Ophthalmol Vis Sci. 2015;56(8):4927–35.PubMedCrossRef Park H-YL, Choi SI, Choi J-A, Park CK. Disc torsion and vertical disc tilt are related to subfoveal scleral thickness in open-angle glaucoma patients with myopia. Invest Ophthalmol Vis Sci. 2015;56(8):4927–35.PubMedCrossRef
53.
54.
55.
go back to reference Sung MS, Lee TH, Heo H, Park SW. Clinical features of superficial and deep peripapillary microvascular density in healthy myopic eyes. PLoS One. 2017;12(10):e0187160.PubMedPubMedCentralCrossRef Sung MS, Lee TH, Heo H, Park SW. Clinical features of superficial and deep peripapillary microvascular density in healthy myopic eyes. PLoS One. 2017;12(10):e0187160.PubMedPubMedCentralCrossRef
56.
go back to reference Aizawa N, Kunikata H, Shiga Y, Yokoyama Y, Omodaka K, Nakazawa T. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14(1):113.PubMedPubMedCentralCrossRef Aizawa N, Kunikata H, Shiga Y, Yokoyama Y, Omodaka K, Nakazawa T. Correlation between structure/function and optic disc microcirculation in myopic glaucoma, measured with laser speckle flowgraphy. BMC Ophthalmol. 2014;14(1):113.PubMedPubMedCentralCrossRef
Metadata
Title
Computer-aided recognition of myopic tilted optic disc using deep learning algorithms in fundus photography
Authors
Baek Hwan Cho
Da Young Lee
Kyung-Ah Park
Sei Yeul Oh
Jong Hak Moon
Ga-In Lee
Hoon Noh
Joon Kyo Chung
Min Chae Kang
Myung Jin Chung
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01657-w

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue