Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

01-12-2020 | Chemical Burn | Research article

Multi-parametric evaluation of autologous cultivated Limbal epithelial cell transplantation outcomes of Limbal stem cell deficiency due to chemical burn

Authors: Ozlem Barut Selver, Mehmet Gurdal, Ayse Yagci, Sait Egrilmez, Melis Palamar, Turker Cavusoglu, Ali Veral, Cagri Guven, Utku Ates, Zheng Wang, J. Mario Wolosin

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

The sparsity of established tools for the grading of limbal stem cell deficiency hinder objective assessments of the clinical outcome of cultivated limbal epithelial cell transplantation. To advance towards the development of standards for the comparison of the outcomes of these bio-surgical protocols we have now applied a battery of recognized objective and patient-declared subjective outcome criteria to the autologous modality of cultivated limbal epithelial cell transplantation.

Methods

The prospective study involved ten patients (M/F = 9/1; mean age = 42.1 years) displaying overt unilateral limbal stem cell deficiency complying with the inclusion criteria described in Methods. Limbal biopsies were obtained from the contralateral eye and their outgrowths after 2-week cultures were transplanted on the affected eye after pannus resection. Outcomes were followed up for 12 months. The objective tests were scores for best-corrected visual acuity (BCVA); using the LogMAR scale, a multiparametric ocular surface score (OSS), and the Schirmer’s test. Subjective scores were based on patient answers to a) perception of visual improvement/pain; b) the 25-item National Eye Institute Visual Function Questionnaire (NEI-VFQ 25); and c) the 12-item Ocular Surface Disease Index Questionnaire (OSDI). All procedures were performed under good manufacture practices using solely xeno-free reagents. In all cases, a single biopsy was divided into two pieces and they were expanded in order to prevent outgrowth failure. In 5 patients, both biopsies generated healthy culture sheet. In those cases the lesser outgrowth were used for immune-histological characterization.

Results

The experimental parallel outgrowth samples showed a similar percent of p63α+ cells. PreOp and 12-month PostOp BCVAs and OSSs were, respectively, 1.15 ± 0.70; 0.21 ± 0.13 and 7.40 ± 2.01; 2,30 ± 1.30, (p < 0.05). Patient’s responses to all three question sets except ocular pain were consistent with significant improvement (p < 0.05).

Conclusion

Objective clinical metrics demonstrate that in patients with limbal stem cell deficiency, cultivated limbal epithelial cell transplantation improves vision and ocular surface health and subjective visual perceptions.
Literature
1.
go back to reference Shapiro MS, Friend J, Thoft RA. Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci. 1981;21:135–42.PubMed Shapiro MS, Friend J, Thoft RA. Corneal re-epithelialization from the conjunctiva. Invest Ophthalmol Vis Sci. 1981;21:135–42.PubMed
2.
go back to reference Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96:709–22.CrossRef Kenyon KR, Tseng SC. Limbal autograft transplantation for ocular surface disorders. Ophthalmology. 1989;96:709–22.CrossRef
3.
go back to reference Chen JJ, Tseng SC. Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci. 1990;31:1301–14.PubMed Chen JJ, Tseng SC. Corneal epithelial wound healing in partial limbal deficiency. Invest Ophthalmol Vis Sci. 1990;31:1301–14.PubMed
4.
go back to reference Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology. 1995;102:1476–85.CrossRef Puangsricharern V, Tseng SC. Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology. 1995;102:1476–85.CrossRef
5.
go back to reference Dua HS. Stem cells of the ocular surface: scientific principles and clinical applications. Br J Ophthalmol. 1995;79:968–9.CrossRef Dua HS. Stem cells of the ocular surface: scientific principles and clinical applications. Br J Ophthalmol. 1995;79:968–9.CrossRef
6.
go back to reference Deng SX, Borderie V, Chan CC, Dana R, Figueiredo FC, Gomes JAP, Pellegrini G, Shimmura S, Kruse FE, The International Limbal Stem Cell Deficiency Working Group. Global Consensus on Definition, Classification, Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea. 2019;38:364–75.CrossRef Deng SX, Borderie V, Chan CC, Dana R, Figueiredo FC, Gomes JAP, Pellegrini G, Shimmura S, Kruse FE, The International Limbal Stem Cell Deficiency Working Group. Global Consensus on Definition, Classification, Diagnosis, and Staging of Limbal Stem Cell Deficiency. Cornea. 2019;38:364–75.CrossRef
8.
go back to reference Tsubota K, Toda I, Saito H, Shinozaki N, Shimazaki J. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe ocular surface disorders. Ophthalmology. 1995;102:1486–9.CrossRef Tsubota K, Toda I, Saito H, Shinozaki N, Shimazaki J. Reconstruction of the corneal epithelium by limbal allograft transplantation for severe ocular surface disorders. Ophthalmology. 1995;102:1486–9.CrossRef
9.
go back to reference Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:990–3.CrossRef Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349:990–3.CrossRef
10.
go back to reference Tseng SCG, Prabhasawat P, Barton K, Gray T, Meller D. Amniotic Membrane Transplantation With or Without Limbal Allografts for Corneal Surface Reconstruction in Patients With Limbal Stem Cell Deficiency. Arch Ophthalmol. 1998;116:431–41.CrossRef Tseng SCG, Prabhasawat P, Barton K, Gray T, Meller D. Amniotic Membrane Transplantation With or Without Limbal Allografts for Corneal Surface Reconstruction in Patients With Limbal Stem Cell Deficiency. Arch Ophthalmol. 1998;116:431–41.CrossRef
11.
go back to reference Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 2000;343:86–93.CrossRef Tsai RJ, Li LM, Chen JK. Reconstruction of damaged corneas by transplantation of autologous limbal epithelial cells. N Engl J Med. 2000;343:86–93.CrossRef
12.
go back to reference Ti SE, Anderson D, Touhami A, Kim C, Tseng SC. Factors affecting outcome following transplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits. Invest Ophthalmol Vis Sci. 2002;43:2584–92.PubMed Ti SE, Anderson D, Touhami A, Kim C, Tseng SC. Factors affecting outcome following transplantation of ex vivo expanded limbal epithelium on amniotic membrane for total limbal deficiency in rabbits. Invest Ophthalmol Vis Sci. 2002;43:2584–92.PubMed
13.
go back to reference Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, Daniels JT. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol. 2007;52:483–502.CrossRef Shortt AJ, Secker GA, Notara MD, Limb GA, Khaw PT, Tuft SJ, Daniels JT. Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Surv Ophthalmol. 2007;52:483–502.CrossRef
14.
go back to reference Cauchi PA, Ang GS, Azuara-Blanco A, Burr JM. A systematic literature review of surgical interventions for limbal stem cell deficiency in humans. Am J Ophthalmol. 2008;146:251–9.CrossRef Cauchi PA, Ang GS, Azuara-Blanco A, Burr JM. A systematic literature review of surgical interventions for limbal stem cell deficiency in humans. Am J Ophthalmol. 2008;146:251–9.CrossRef
15.
go back to reference Baradaran-Rafii A, Ebrahimi M, Kanavi MR, Taghi-Abadi E, Aghdami N, Eslani M, Bakhtiari P, Einollahi B, Baharvand H, Javadi M-A. Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea. 2010;29:502–9.CrossRef Baradaran-Rafii A, Ebrahimi M, Kanavi MR, Taghi-Abadi E, Aghdami N, Eslani M, Bakhtiari P, Einollahi B, Baharvand H, Javadi M-A. Midterm outcomes of autologous cultivated limbal stem cell transplantation with or without penetrating keratoplasty. Cornea. 2010;29:502–9.CrossRef
16.
go back to reference Sacchetti M, Rama P, Bruscolini A, Lambiase A. Limbal Stem Cell Transplantation: Clinical Results, Limits, and Perspectives. Stem Cells Int. 2018;2018:8086269.CrossRef Sacchetti M, Rama P, Bruscolini A, Lambiase A. Limbal Stem Cell Transplantation: Clinical Results, Limits, and Perspectives. Stem Cells Int. 2018;2018:8086269.CrossRef
17.
go back to reference Shanbhag SS, Nikpoor N, Rao Donthineni P, Singh V, Chodosh J, Basu S. Autologous limbal stem cell transplantation: a systematic review of clinical outcomes with different surgical techniques. Br J Ophthalmol. 2020;104:247–53.CrossRef Shanbhag SS, Nikpoor N, Rao Donthineni P, Singh V, Chodosh J, Basu S. Autologous limbal stem cell transplantation: a systematic review of clinical outcomes with different surgical techniques. Br J Ophthalmol. 2020;104:247–53.CrossRef
18.
go back to reference Basu S, Fernandez MM, Das S, Gaddipati S, Vemuganti GK, Sangwan VS. Clinical outcomes of xeno-free allogeneic cultivated limbal epithelial transplantation for bilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96:1504–9.CrossRef Basu S, Fernandez MM, Das S, Gaddipati S, Vemuganti GK, Sangwan VS. Clinical outcomes of xeno-free allogeneic cultivated limbal epithelial transplantation for bilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96:1504–9.CrossRef
19.
go back to reference Shortt AJ, Bunce C, Levis HJ, Blows P, Doré CJ, Vernon A, Secker GA, Tuft SJ, Daniels JT. Three-year outcomes of cultured limbal epithelial allografts in aniridia and Stevens-Johnson syndrome evaluated using the clinical outcome assessment in surgical trials assessment tool. Stem Cells Transl Med. 2014;3:265–75.CrossRef Shortt AJ, Bunce C, Levis HJ, Blows P, Doré CJ, Vernon A, Secker GA, Tuft SJ, Daniels JT. Three-year outcomes of cultured limbal epithelial allografts in aniridia and Stevens-Johnson syndrome evaluated using the clinical outcome assessment in surgical trials assessment tool. Stem Cells Transl Med. 2014;3:265–75.CrossRef
20.
go back to reference Soares E, Zhou H. Master regulatory role of p63 in epidermal development and disease. Cell Mol Life Sci. 2018;75:1179–90.CrossRef Soares E, Zhou H. Master regulatory role of p63 in epidermal development and disease. Cell Mol Life Sci. 2018;75:1179–90.CrossRef
21.
go back to reference Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the ocular surface disease index. Arch Ophthalmol. 2000;118:615–62.CrossRef Schiffman RM, Christianson MD, Jacobsen G, Hirsch JD, Reis BL. Reliability and validity of the ocular surface disease index. Arch Ophthalmol. 2000;118:615–62.CrossRef
22.
go back to reference Irkec M, Turkish OSDI. Study group. Reliability and validity of Turkish translation of the ocular surface disease index (OSDI) in dry eye syndrome. Invest Ophthalmol Vis Sci. 2007;48:408. Irkec M, Turkish OSDI. Study group. Reliability and validity of Turkish translation of the ocular surface disease index (OSDI) in dry eye syndrome. Invest Ophthalmol Vis Sci. 2007;48:408.
23.
go back to reference Toprak AB, Eser E, Guler C, Baser FE, Mayali H. Cross-validation of the Turkish version of the 25-item National eye Institute visual functioning questionnaire (NEI-VFQ 25). Ophthalmic Epidemiol. 2005;12:259–69.CrossRef Toprak AB, Eser E, Guler C, Baser FE, Mayali H. Cross-validation of the Turkish version of the 25-item National eye Institute visual functioning questionnaire (NEI-VFQ 25). Ophthalmic Epidemiol. 2005;12:259–69.CrossRef
24.
go back to reference Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98:3156–61.CrossRef Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A. 2001;98:3156–61.CrossRef
25.
go back to reference Sekiya EJ, Forte A, de Bellis Kühn TIB, Janz F, Bydlowski SP, Alves A. Establishing a stem cell culture laboratory for clinical trials. Rev Bras Hematol Hemoter. 2012;34:236–41.CrossRef Sekiya EJ, Forte A, de Bellis Kühn TIB, Janz F, Bydlowski SP, Alves A. Establishing a stem cell culture laboratory for clinical trials. Rev Bras Hematol Hemoter. 2012;34:236–41.CrossRef
Metadata
Title
Multi-parametric evaluation of autologous cultivated Limbal epithelial cell transplantation outcomes of Limbal stem cell deficiency due to chemical burn
Authors
Ozlem Barut Selver
Mehmet Gurdal
Ayse Yagci
Sait Egrilmez
Melis Palamar
Turker Cavusoglu
Ali Veral
Cagri Guven
Utku Ates
Zheng Wang
J. Mario Wolosin
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01588-6

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue