Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Research article

Normative values of the retinal macular thickness in a middle eastern population

Authors: Mouna M. AlSaad, Amjad T. Shatarat, Saif Aldeen S. AlRyalat

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

Since the normative value of the retinal macular thickness is undocumented in the Middle East, the aim of this work is to assess the normative values of the macular thickness in healthy eyes in a Middle Eastern population and its relationship with age, sex, and laterality.

Methods

One hundred sixteen individuals were randomly selected from volunteers visiting the Jordan University Hospital in Amman, Jordan. Measurements were obtained using the Fourier domain optical coherence tomography (OCT). Multivariate regression models were developed to obtain predicted normative values with adjustment to candidate variables. In addition, the effect of age, sex and laterality were evaluated.

Results

The average central fovea macular thickness was 229.5 (±30.85) um. The quadratic value of the retinal macular thickness decreased from the superior value of 299.71 (±23.67) um (P = .001) to the inferior value of 296.46 (±28.85) um(P = .001) and a nasal figure of 93.63 (±26.86) um(P = .001). The temporal area has the thinnest value of 293.43 (±30.78) um (P = 0.001). Central thickness was higher in males with a mean variation of 11.67 um (95% CI, 2.41 to 20.93) (p = 0.003). The thickness was highest within 3 mm diameter from the center and decreased towards the periphery Eye sidedness didn’t contribute to variability of the macular thickness. Furthermore, we found a significant difference between age and central macular thickness (p = 0.001), as age was a positive predictor for macular thickness.

Conclusion

Our set of predicted normative data may be used to interrupt measurement of the macular thickness in Middle Eastern population. The average fovea macular thickness among Jordanians is consistent with previously reported values. Normative values from additional Middle Eastern. Population are required to appraise our model.
Literature
1.
go back to reference Adhi M, Aziz S, Mohammad K, Adhi MI. Macular Thickness by Age and Gender in Healthy Eyes Using Spectral Domain Optical Coherence Tomography. PloS One. 2012;7(5):e37638 PMID 22629435.CrossRef Adhi M, Aziz S, Mohammad K, Adhi MI. Macular Thickness by Age and Gender in Healthy Eyes Using Spectral Domain Optical Coherence Tomography. PloS One. 2012;7(5):e37638 PMID 22629435.CrossRef
4.
go back to reference Legarreta J, Gregori G, Punjabi OS, Knighton RW. Greeta a. Lalwani and Carmen a. Puliafito macular thickness measurement in Normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2008;39(4):43–9. Legarreta J, Gregori G, Punjabi OS, Knighton RW. Greeta a. Lalwani and Carmen a. Puliafito macular thickness measurement in Normal eyes using spectral domain optical coherence tomography. Ophthalmic Surg Lasers Imaging. 2008;39(4):43–9.
5.
go back to reference Podoleanu AG, Rosen RB. Combinations of techniques in imaging the retina with high resolution. Prog Retin Eye Res. 2008;27(4):464–99.CrossRef Podoleanu AG, Rosen RB. Combinations of techniques in imaging the retina with high resolution. Prog Retin Eye Res. 2008;27(4):464–99.CrossRef
6.
go back to reference Tankam P, He Z, Chu YJ, Won J, Canavesi C, Lepine T, Hindman HB, Topham DJ, Gain P, Thuret G, Rolland JP. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases. Opt Lett. 2015;40(6):1113–6.CrossRef Tankam P, He Z, Chu YJ, Won J, Canavesi C, Lepine T, Hindman HB, Topham DJ, Gain P, Thuret G, Rolland JP. Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases. Opt Lett. 2015;40(6):1113–6.CrossRef
8.
go back to reference Maria Nieves-Moreno, Jose Martinez de la Casa JM Cifuentes-Canorea P, Sastre Ibanez M, Santos Bueso E, Saenz- Frances, et al. Normative Database for Separate Inner Retinal Layer Thickness Using Spectral Domain Optical Coherence Tomography in Caucasian Population. Plos One 2017; 12(7): e0180450. Doi: https://doi.org/10.1371/journal.pone.0180450. Maria Nieves-Moreno, Jose Martinez de la Casa JM Cifuentes-Canorea P, Sastre Ibanez M, Santos Bueso E, Saenz- Frances, et al. Normative Database for Separate Inner Retinal Layer Thickness Using Spectral Domain Optical Coherence Tomography in Caucasian Population. Plos One 2017; 12(7): e0180450. Doi: https://​doi.​org/​10.​1371/​journal.​pone.​0180450.
9.
go back to reference Cole TJ. Too many digits the presentation of numerical data. Arch Dis Child. 2015;26(12):1563–70. Cole TJ. Too many digits the presentation of numerical data. Arch Dis Child. 2015;26(12):1563–70.
10.
go back to reference Grover S, Murthy RK, Brar VS, Chalam KV. Normative Data for Macular Thickness by High Definition Spectral Domain Optical Coherence Tomography Spectralis. Am J of Ophthalmol. 2009;148(2):266–71.CrossRef Grover S, Murthy RK, Brar VS, Chalam KV. Normative Data for Macular Thickness by High Definition Spectral Domain Optical Coherence Tomography Spectralis. Am J of Ophthalmol. 2009;148(2):266–71.CrossRef
11.
go back to reference Kanai K, Abe T, Murayama K, Yoneya S. Retinal thickness and changes with age. Nihon Ganka Gakkai Zasshi. 2002;106(3):162–5.PubMed Kanai K, Abe T, Murayama K, Yoneya S. Retinal thickness and changes with age. Nihon Ganka Gakkai Zasshi. 2002;106(3):162–5.PubMed
12.
go back to reference Sabouri MR, Khazemnezad E, Hafezi V. Assessment of Macular thickness in Healthy Eyes Using Cirrus HD-OCT: A Cross Sectional Study. Med Hypothesis Discov Innov Ophthalmol. 2016;5(3):104–11.PubMedPubMedCentral Sabouri MR, Khazemnezad E, Hafezi V. Assessment of Macular thickness in Healthy Eyes Using Cirrus HD-OCT: A Cross Sectional Study. Med Hypothesis Discov Innov Ophthalmol. 2016;5(3):104–11.PubMedPubMedCentral
13.
go back to reference Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, LLiev ME, Frey M, Rothenbuehler SP. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest. Opttmol Vi Sci. 2009;50(7):3432–7. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, LLiev ME, Frey M, Rothenbuehler SP. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Invest. Opttmol Vi Sci. 2009;50(7):3432–7.
14.
go back to reference Hashemi H, Khabazkhoob M, Yekta A, Emanian M, Nabovati P, Foutouhi A. The distribution of macular thickness and its determinants in a healthy population. Ophthalmic Epidemiol. 2017;23:1–9. Hashemi H, Khabazkhoob M, Yekta A, Emanian M, Nabovati P, Foutouhi A. The distribution of macular thickness and its determinants in a healthy population. Ophthalmic Epidemiol. 2017;23:1–9.
15.
go back to reference Kashani AH, Galler IZ, Shah HM, DustinL DDV, et al. Retinal thickness analysis by race gender and age using Stratus OCT. Am J ophthalmol. 2010;149:496–502. Kashani AH, Galler IZ, Shah HM, DustinL DDV, et al. Retinal thickness analysis by race gender and age using Stratus OCT. Am J ophthalmol. 2010;149:496–502.
16.
go back to reference Asefzadeh B, Cavallerano AA, Fisch MB. Racial differences in macular thicknessIn healthy eyes. Optom Vis Sci. 2007;84:941–5.CrossRef Asefzadeh B, Cavallerano AA, Fisch MB. Racial differences in macular thicknessIn healthy eyes. Optom Vis Sci. 2007;84:941–5.CrossRef
17.
go back to reference Oshitari T, Hanawa K, Adachi-Usami EA. macular and Retinal nerve fiber thickness in Japanese measured by Stratus optical coherence tomography. Clin Ophthalmol. 2007;1:131–40. Oshitari T, Hanawa K, Adachi-Usami EA. macular and Retinal nerve fiber thickness in Japanese measured by Stratus optical coherence tomography. Clin Ophthalmol. 2007;1:131–40.
18.
go back to reference Tewari HK, Wagh VB, Sony P, Venkatesh P, Singh R. Macular thickness evaluation using the optical coherence tomography in normal Indian eyes. Indian J Ophthalmol. 2004;52:199–20414.PubMed Tewari HK, Wagh VB, Sony P, Venkatesh P, Singh R. Macular thickness evaluation using the optical coherence tomography in normal Indian eyes. Indian J Ophthalmol. 2004;52:199–20414.PubMed
Metadata
Title
Normative values of the retinal macular thickness in a middle eastern population
Authors
Mouna M. AlSaad
Amjad T. Shatarat
Saif Aldeen S. AlRyalat
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01391-3

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue