Skip to main content
Top
Published in: BMC Ophthalmology 1/2020

Open Access 01-12-2020 | Glaucoma | Research article

Association of macular thickness with parapapillary atrophy in myopic eyes

Authors: Helong Piao, Yue Guo, Jun Young Ha, Mi Sun Sung, Sang Woo Park

Published in: BMC Ophthalmology | Issue 1/2020

Login to get access

Abstract

Background

To investigate whether macular structure could be affected by axial elongation and to determine the association between macular intraretinal thickness and the microstructure of β-zone parapapillary atrophy (PPA) in myopic eyes.

Methods

The study recruited 113 healthy myopic subjects (113 eyes). Images of the macula, subfoveal choroid, and optic nerve head were acquired using spectral-domain optical coherence tomography (SD-OCT). An automatic segmentation algorithm was used to segment the macular images into 7 intraretinal layers. PPA widths with and without Bruch’s membrane (PPA+BM and PPA-BM, respectively) were evaluated. Linear regression analysis was performed to evaluate the association between macular intraretinal thickness and axial length and the microstructure of PPA.

Results

An increase in axial length was associated with a decrease in whole macular thickness of the peripheral region and an increase in whole macular thickness of the central region. Thickness alterations of the macular intraretinal layers were most apparent in the peripheral region. A significant correlation was found between PPA-BM width and macular intraretinal layer thickness, whereas no significant correlation was found between PPA+BM width and macular intraretinal layer thickness. Moreover, both PPA+BM and PPA-BM widths significantly correlated with subfoveal choroidal thickness.

Conclusions

Macular intraretinal layer thickness may be affected by PPA-BM width. These findings indicate that the microstructure of PPA should be considered when evaluating the macula in patient with myopia and glaucoma.
Literature
1.
go back to reference Lee SH, Lee EJ, Kim TW. Topographic correlation between Juxtapapillary Choroidal thickness and microstructure of Parapapillary atrophy. Ophthalmology. 2016;123:1965–73.CrossRefPubMed Lee SH, Lee EJ, Kim TW. Topographic correlation between Juxtapapillary Choroidal thickness and microstructure of Parapapillary atrophy. Ophthalmology. 2016;123:1965–73.CrossRefPubMed
3.
go back to reference Zhang Q, Wang YX, Wei WB, Xu L, Jonas JB. Parapapillary Beta zone and gamma zone in a healthy population: the Beijing eye study 2011. Invest Ophthalmol Vis Sci. 2018;59:3320–9.CrossRefPubMed Zhang Q, Wang YX, Wei WB, Xu L, Jonas JB. Parapapillary Beta zone and gamma zone in a healthy population: the Beijing eye study 2011. Invest Ophthalmol Vis Sci. 2018;59:3320–9.CrossRefPubMed
4.
go back to reference Miki A, Ikuno Y, Weinreb RN, et al. Measurements of the parapapillary atrophy zones in en face optical coherence tomography images. PLoS One. 2017;12:e0175347.PubMedPubMedCentralCrossRef Miki A, Ikuno Y, Weinreb RN, et al. Measurements of the parapapillary atrophy zones in en face optical coherence tomography images. PLoS One. 2017;12:e0175347.PubMedPubMedCentralCrossRef
5.
go back to reference Kim M, Kim TW, Weinreb RN, Lee EJ. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1790–7.CrossRefPubMed Kim M, Kim TW, Weinreb RN, Lee EJ. Differentiation of parapapillary atrophy using spectral-domain optical coherence tomography. Ophthalmology. 2013;120:1790–7.CrossRefPubMed
6.
go back to reference Marsh-Tootle WL, Harb E, Hou W, et al. Optic nerve tilt, crescent, Ovality, and torsion in a multi-ethnic cohort of young adults with and without myopia. Invest Ophthalmol Vis Sci. 2017;58:3158–71.PubMedPubMedCentralCrossRef Marsh-Tootle WL, Harb E, Hou W, et al. Optic nerve tilt, crescent, Ovality, and torsion in a multi-ethnic cohort of young adults with and without myopia. Invest Ophthalmol Vis Sci. 2017;58:3158–71.PubMedPubMedCentralCrossRef
7.
go back to reference Chen S, Wang B, Dong N, Ren X, Zhang T, Xiao L. Macular measurements using spectral-domain optical coherence tomography in Chinese myopic children. Invest Ophthalmol Vis Sci. 2014;55:7410–6.CrossRefPubMed Chen S, Wang B, Dong N, Ren X, Zhang T, Xiao L. Macular measurements using spectral-domain optical coherence tomography in Chinese myopic children. Invest Ophthalmol Vis Sci. 2014;55:7410–6.CrossRefPubMed
8.
go back to reference Lam DS, Leung KS, Mohamed S, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007;48:376–82.CrossRefPubMed Lam DS, Leung KS, Mohamed S, et al. Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci. 2007;48:376–82.CrossRefPubMed
9.
10.
go back to reference Harb E, Hyman L, Gwiazda J, et al. Choroidal Thickness Profiles in Myopic Eyes of Young Adults in the Correction of Myopia Evaluation Trial Cohort. Am J Ophthalmol. 2015;160:62–71.e2.PubMedPubMedCentralCrossRef Harb E, Hyman L, Gwiazda J, et al. Choroidal Thickness Profiles in Myopic Eyes of Young Adults in the Correction of Myopia Evaluation Trial Cohort. Am J Ophthalmol. 2015;160:62–71.e2.PubMedPubMedCentralCrossRef
11.
go back to reference Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM. The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol. 2013;155:314–9.e1.CrossRefPubMed Flores-Moreno I, Lugo F, Duker JS, Ruiz-Moreno JM. The relationship between axial length and choroidal thickness in eyes with high myopia. Am J Ophthalmol. 2013;155:314–9.e1.CrossRefPubMed
12.
go back to reference Wong CW, Phua V, Lee SY, Wong TY, Cheung CM. Is Choroidal or scleral thickness related to myopic macular degeneration? Invest Ophthalmol Vis Sci. 2017;58:907–13.CrossRefPubMed Wong CW, Phua V, Lee SY, Wong TY, Cheung CM. Is Choroidal or scleral thickness related to myopic macular degeneration? Invest Ophthalmol Vis Sci. 2017;58:907–13.CrossRefPubMed
14.
go back to reference Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25:381–91.CrossRefPubMed Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25:381–91.CrossRefPubMed
16.
go back to reference Czudowska MA, Ramdas WD, Wolfs RC, et al. Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study. Ophthalmology. 2010;117:1705–12.CrossRefPubMed Czudowska MA, Ramdas WD, Wolfs RC, et al. Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam study. Ophthalmology. 2010;117:1705–12.CrossRefPubMed
17.
go back to reference Suzuki Y, Iwase A, Araie M, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi study. Ophthalmology. 2006;113:1613–7.CrossRefPubMed Suzuki Y, Iwase A, Araie M, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi study. Ophthalmology. 2006;113:1613–7.CrossRefPubMed
18.
go back to reference Terry L, Cassels N, Lu K, et al. Automated retinal layer segmentation using spectral domain optical coherence tomography: evaluation of inter-session repeatability and agreement between devices. PLoS One. 2016;11:e0162001.PubMedPubMedCentralCrossRef Terry L, Cassels N, Lu K, et al. Automated retinal layer segmentation using spectral domain optical coherence tomography: evaluation of inter-session repeatability and agreement between devices. PLoS One. 2016;11:e0162001.PubMedPubMedCentralCrossRef
19.
go back to reference Barham R, El Rami H, Sun JK, Silva PS. Evidence-based treatment of diabetic macular edema. Semin Ophthalmol. 2017;32:56–66.CrossRefPubMed Barham R, El Rami H, Sun JK, Silva PS. Evidence-based treatment of diabetic macular edema. Semin Ophthalmol. 2017;32:56–66.CrossRefPubMed
20.
go back to reference Hood DC. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res. 2017;57:46–75.CrossRefPubMed Hood DC. Improving our understanding, and detection, of glaucomatous damage: an approach based upon optical coherence tomography (OCT). Prog Retin Eye Res. 2017;57:46–75.CrossRefPubMed
21.
go back to reference Huang S, Chen Q, Ma Q, Liu X, Lu F, Shen M. Three-dimensional characteristics of four macular intraretinal layer thicknesses in symptomatic and asymptomatic carriers of G11778A mutation with leber’s hereditary optic neuropathy. Retina. 2016;36:2409–18.CrossRefPubMed Huang S, Chen Q, Ma Q, Liu X, Lu F, Shen M. Three-dimensional characteristics of four macular intraretinal layer thicknesses in symptomatic and asymptomatic carriers of G11778A mutation with leber’s hereditary optic neuropathy. Retina. 2016;36:2409–18.CrossRefPubMed
22.
go back to reference Jung HH, Sung MS, Heo H, Park SW. Macular inner plexiform and retinal nerve fiber layer thickness in glaucoma. Optom Vis Sci. 2014;91:1320–7.CrossRefPubMed Jung HH, Sung MS, Heo H, Park SW. Macular inner plexiform and retinal nerve fiber layer thickness in glaucoma. Optom Vis Sci. 2014;91:1320–7.CrossRefPubMed
23.
go back to reference Sung MS, Heo H, Park SW. Structure-function relationship in advanced Glaucoma after reaching the RNFL floor. J Glaucoma. 2019;28:1006–11.CrossRefPubMed Sung MS, Heo H, Park SW. Structure-function relationship in advanced Glaucoma after reaching the RNFL floor. J Glaucoma. 2019;28:1006–11.CrossRefPubMed
24.
go back to reference Park JW, Jung HH, Heo H, Park SW. Validity of the temporal-to-nasal macular ganglion cell-inner plexiform layer thickness ratio as a diagnostic parameter in early glaucoma. Acta Ophthalmol. 2015;93:e356–65.CrossRefPubMed Park JW, Jung HH, Heo H, Park SW. Validity of the temporal-to-nasal macular ganglion cell-inner plexiform layer thickness ratio as a diagnostic parameter in early glaucoma. Acta Ophthalmol. 2015;93:e356–65.CrossRefPubMed
25.
go back to reference Sung KR, Sun JH, Na JH, Lee JY, Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119:308–13.CrossRefPubMed Sung KR, Sun JH, Na JH, Lee JY, Lee Y. Progression detection capability of macular thickness in advanced glaucomatous eyes. Ophthalmology. 2012;119:308–13.CrossRefPubMed
26.
go back to reference Demirkaya N, van Dijk HW, van Schuppen SM, et al. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:4934–40.PubMedPubMedCentralCrossRef Demirkaya N, van Dijk HW, van Schuppen SM, et al. Effect of age on individual retinal layer thickness in normal eyes as measured with spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54:4934–40.PubMedPubMedCentralCrossRef
27.
go back to reference Ooto S, Hangai M, Tomidokoro A, et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci. 2011;52:8769–79.CrossRefPubMed Ooto S, Hangai M, Tomidokoro A, et al. Effects of age, sex, and axial length on the three-dimensional profile of normal macular layer structures. Invest Ophthalmol Vis Sci. 2011;52:8769–79.CrossRefPubMed
28.
go back to reference Liu X, Shen M, Yuan Y, et al. Macular Thickness Profiles of Intraretinal Layers in Myopia Evaluated by Ultrahigh-Resolution Optical Coherence Tomography. Am J Ophthalmol. 2015;160:53–61.e2.CrossRefPubMed Liu X, Shen M, Yuan Y, et al. Macular Thickness Profiles of Intraretinal Layers in Myopia Evaluated by Ultrahigh-Resolution Optical Coherence Tomography. Am J Ophthalmol. 2015;160:53–61.e2.CrossRefPubMed
29.
go back to reference Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991;98:741–56.CrossRef Early Treatment Diabetic Retinopathy Study design and baseline patient characteristics. ETDRS report number 7. Ophthalmology. 1991;98:741–56.CrossRef
30.
go back to reference Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. International Nomenclature for Optical Coherence Tomography (IN•OCT) Panel.. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology. 2014;121:1572–8.CrossRefPubMed Staurenghi G, Sadda S, Chakravarthy U, Spaide RF. International Nomenclature for Optical Coherence Tomography (IN•OCT) Panel.. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN•OCT consensus. Ophthalmology. 2014;121:1572–8.CrossRefPubMed
31.
go back to reference Yamada H, Akagi T, Nakanishi H, et al. Microstructure of Peripapillary atrophy and subsequent visual field progression in treated primary open-angle Glaucoma. Ophthalmology. 2016;123:542–51.CrossRefPubMed Yamada H, Akagi T, Nakanishi H, et al. Microstructure of Peripapillary atrophy and subsequent visual field progression in treated primary open-angle Glaucoma. Ophthalmology. 2016;123:542–51.CrossRefPubMed
32.
go back to reference Kim YW, Lee EJ, Kim TW, Kim M, Kim H. Microstructure of β-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmology. 2014;121:1341–9.CrossRefPubMed Kim YW, Lee EJ, Kim TW, Kim M, Kim H. Microstructure of β-zone parapapillary atrophy and rate of retinal nerve fiber layer thinning in primary open-angle glaucoma. Ophthalmology. 2014;121:1341–9.CrossRefPubMed
33.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.
34.
go back to reference Hwang YH, Kim YY. Macular thickness and volume of myopic eyes measured using spectral-domain optical coherence tomography. Clin Exp Optom. 2012;95:492–8.CrossRefPubMed Hwang YH, Kim YY. Macular thickness and volume of myopic eyes measured using spectral-domain optical coherence tomography. Clin Exp Optom. 2012;95:492–8.CrossRefPubMed
35.
go back to reference Choovuthayakorn J, Laowong T, Watanachai N, Patikulsila D, Chaikitmongkol V. Spectral-domain optical coherence tomography of macula in myopia. Int Ophthalmol. 2016;36:319–25.CrossRefPubMed Choovuthayakorn J, Laowong T, Watanachai N, Patikulsila D, Chaikitmongkol V. Spectral-domain optical coherence tomography of macula in myopia. Int Ophthalmol. 2016;36:319–25.CrossRefPubMed
36.
go back to reference Zhao MH, Wu Q, Hu P, Jia LL. Macular thickness in myopia: an OCT study of young Chinese patients. Curr Eye Res. 2016;41:1373–8.CrossRefPubMed Zhao MH, Wu Q, Hu P, Jia LL. Macular thickness in myopia: an OCT study of young Chinese patients. Curr Eye Res. 2016;41:1373–8.CrossRefPubMed
37.
go back to reference Wu PC, Chen YJ, Chen CH, et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye (Lond). 2008;22:551–5.CrossRef Wu PC, Chen YJ, Chen CH, et al. Assessment of macular retinal thickness and volume in normal eyes and highly myopic eyes with third-generation optical coherence tomography. Eye (Lond). 2008;22:551–5.CrossRef
38.
go back to reference Invernizzi A, Pellegrini M, Acquistapace A, et al. Normative Data for Retinal-Layer Thickness Maps Generated by Spectral-Domain OCT in a White Population. Ophthalmol Retina. 2018;2:808–815.e1.PubMedCrossRef Invernizzi A, Pellegrini M, Acquistapace A, et al. Normative Data for Retinal-Layer Thickness Maps Generated by Spectral-Domain OCT in a White Population. Ophthalmol Retina. 2018;2:808–815.e1.PubMedCrossRef
39.
go back to reference Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina. 2003;23:177–82.PubMedCrossRef Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y. Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina. 2003;23:177–82.PubMedCrossRef
40.
go back to reference Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci. 2010;51:3913–8.CrossRefPubMed Song WK, Lee SC, Lee ES, Kim CY, Kim SS. Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci. 2010;51:3913–8.CrossRefPubMed
41.
go back to reference Harb E, Hyman L, Fazzari M, Gwiazda J, Marsh-Tootle W, COMET Study Group. Factors associated with macular thickness in the COMET myopic cohort. Optom Vis Sci. 2012;89:620–31.PubMedPubMedCentralCrossRef Harb E, Hyman L, Fazzari M, Gwiazda J, Marsh-Tootle W, COMET Study Group. Factors associated with macular thickness in the COMET myopic cohort. Optom Vis Sci. 2012;89:620–31.PubMedPubMedCentralCrossRef
42.
go back to reference Kim MJ, Lee EJ, Kim TW. Peripapillary retinal nerve fibre layer thickness profile in subjects with myopia measured using the stratus optical coherence tomography. Br J Ophthalmol. 2010;94:115–20.CrossRefPubMed Kim MJ, Lee EJ, Kim TW. Peripapillary retinal nerve fibre layer thickness profile in subjects with myopia measured using the stratus optical coherence tomography. Br J Ophthalmol. 2010;94:115–20.CrossRefPubMed
43.
go back to reference Vianna JR, Malik R, Danthurebandara VM, et al. Beta and Gamma Peripapillary atrophy in myopic eyes with and without Glaucoma. Invest Ophthalmol Vis Sci. 2016;57:3103–11.CrossRefPubMed Vianna JR, Malik R, Danthurebandara VM, et al. Beta and Gamma Peripapillary atrophy in myopic eyes with and without Glaucoma. Invest Ophthalmol Vis Sci. 2016;57:3103–11.CrossRefPubMed
44.
go back to reference Teng CC, De Moraes CG, Prata TS, et al. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology. 2011;118:2409–13.CrossRefPubMed Teng CC, De Moraes CG, Prata TS, et al. The region of largest β-zone parapapillary atrophy area predicts the location of most rapid visual field progression. Ophthalmology. 2011;118:2409–13.CrossRefPubMed
45.
go back to reference Sullivan-Mee M, Patel NB, Pensyl D, Qualls C. Relationship Between Juxtapapillary Choroidal Volume and Beta-Zone Parapapillary Atrophy in Eyes With and Without Primary Open-Angle Glaucoma. Am J Ophthalmol. 2015;160:637–47.e1.PubMedPubMedCentralCrossRef Sullivan-Mee M, Patel NB, Pensyl D, Qualls C. Relationship Between Juxtapapillary Choroidal Volume and Beta-Zone Parapapillary Atrophy in Eyes With and Without Primary Open-Angle Glaucoma. Am J Ophthalmol. 2015;160:637–47.e1.PubMedPubMedCentralCrossRef
46.
go back to reference Chang MY, Shin A, Park J, et al. Deformation of optic nerve head and Peripapillary tissues by horizontal Duction. Am J Ophthalmol. 2017;174:85–94.CrossRefPubMed Chang MY, Shin A, Park J, et al. Deformation of optic nerve head and Peripapillary tissues by horizontal Duction. Am J Ophthalmol. 2017;174:85–94.CrossRefPubMed
47.
go back to reference Jonas JB, Fang Y, Weber P, Ohno-Matsui K. Parapapillary gamma and delta zones in high myopia. Retina. 2018;38:931–8.CrossRefPubMed Jonas JB, Fang Y, Weber P, Ohno-Matsui K. Parapapillary gamma and delta zones in high myopia. Retina. 2018;38:931–8.CrossRefPubMed
48.
go back to reference Lee KM, Choung HK, Kim M, Oh S, Kim SH. Change of β-zone Parapapillary atrophy during axial elongation: Boramae myopia cohort study report 3. Invest Ophthalmol Vis Sci. 2018;59:4020–30.CrossRefPubMed Lee KM, Choung HK, Kim M, Oh S, Kim SH. Change of β-zone Parapapillary atrophy during axial elongation: Boramae myopia cohort study report 3. Invest Ophthalmol Vis Sci. 2018;59:4020–30.CrossRefPubMed
49.
go back to reference Chui TY, Zhong Z, Burns SA. The relationship between peripapillary crescent and axial length: implications for differential eye growth. Vis Res. 2011;51:2132–8.CrossRefPubMed Chui TY, Zhong Z, Burns SA. The relationship between peripapillary crescent and axial length: implications for differential eye growth. Vis Res. 2011;51:2132–8.CrossRefPubMed
50.
go back to reference Sung MS, Lee TH, Heo H, Park SW. Association between optic nerve head deformation and retinal microvasculature in high myopia. Am J Ophthalmol. 2018;188:81–90.CrossRefPubMed Sung MS, Lee TH, Heo H, Park SW. Association between optic nerve head deformation and retinal microvasculature in high myopia. Am J Ophthalmol. 2018;188:81–90.CrossRefPubMed
51.
go back to reference Hwang YH, Yoo C, Kim YY. Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness measured by spectral-domain optical coherence tomography. J Glaucoma. 2012;21:260–5.CrossRefPubMed Hwang YH, Yoo C, Kim YY. Myopic optic disc tilt and the characteristics of peripapillary retinal nerve fiber layer thickness measured by spectral-domain optical coherence tomography. J Glaucoma. 2012;21:260–5.CrossRefPubMed
Metadata
Title
Association of macular thickness with parapapillary atrophy in myopic eyes
Authors
Helong Piao
Yue Guo
Jun Young Ha
Mi Sun Sung
Sang Woo Park
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2020
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-020-01362-8

Other articles of this Issue 1/2020

BMC Ophthalmology 1/2020 Go to the issue