Skip to main content
Top
Published in: BMC Ophthalmology 1/2019

Open Access 01-12-2019 | Pigmentary Retinopathy | Research article

Novel mutations of RPGR in Chinese families with X-linked retinitis pigmentosa

Authors: Zhimeng Zhang, Hehua Dai, Lei Wang, Tianchang Tao, Jing Xu, Xiaowei Sun, Liping Yang, Genlin Li

Published in: BMC Ophthalmology | Issue 1/2019

Login to get access

Abstract

Background

RP (retinitis pigmentosa) is a group of hereditary retinal degenerative diseases. XLRP is a relatively severe subtype of RP. Thus, it is necessary to identify genes and mutations in patients who present with X-linked retinitis pigmentosa.

Methods

Genomic DNA was extracted from peripheral blood. The coding regions and intron-exon boundaries of the retinitis pigmentosa GTPase regulator (RPGR) and RP2 genes were amplified by PCR and then sequenced directly. Ophthalmic examinations were performed to identify affected individuals from two families and to characterize the phenotype of the disease.

Results

Mutation screening demonstrated two novel nonsense mutations (c.1541C > G; p.S514X and c.2833G > T; p.E945X) in the RPGR gene. The clinical manifestation of family 1 with mutations in exon 13 was mild. Genotype-phenotype correlation analysis suggested that patients with mutations close to the downstream region of ORF15 in family 2 manifested an early loss of cone function. Family 2 carried a nonsense mutation in ORF15 that appeared to have a semi-dominant pattern of inheritance. All male patients and two female carriers in family 2 manifested pathological myopia (PM), indicating that there may be a distinctive X-linked genotype-phenotype correlation between RP and PM.

Conclusions

We identified two novel mutations of the RPGR gene, which broadens the spectrum of RPGR mutations and the phenotypic spectrum of the disease in Chinese families.
Literature
1.
go back to reference Tee JJ, Smith AJ, Hardcastle AJ, et al. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2016;100(8):1022.CrossRef Tee JJ, Smith AJ, Hardcastle AJ, et al. RPGR-associated retinopathy: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2016;100(8):1022.CrossRef
2.
go back to reference You QS, Xu L, Wang YX, et al. Prevalence of retinitis pigmentosa in North China: the Beijing eye public health care project. Acta Ophthalmol. 2013;91(6):e499–500.CrossRef You QS, Xu L, Wang YX, et al. Prevalence of retinitis pigmentosa in North China: the Beijing eye public health care project. Acta Ophthalmol. 2013;91(6):e499–500.CrossRef
3.
go back to reference Stone EM, Andorf JL, Whitmore SS, et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology. 2017;124:1314–31.CrossRef Stone EM, Andorf JL, Whitmore SS, et al. Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology. 2017;124:1314–31.CrossRef
4.
go back to reference Xu Y, Guan L, Shen T, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.CrossRef Xu Y, Guan L, Shen T, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.CrossRef
5.
go back to reference Fishman GA. Retinitis pigmentosa. Genetic percentages Arch Ophthalmol. 1978;96(5):822–6.CrossRef Fishman GA. Retinitis pigmentosa. Genetic percentages Arch Ophthalmol. 1978;96(5):822–6.CrossRef
6.
go back to reference Churchill JD, Bowne SJ, Sullivan LS, et al. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54:1411–6.CrossRef Churchill JD, Bowne SJ, Sullivan LS, et al. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54:1411–6.CrossRef
7.
go back to reference Tsang SH, Sharma T. X-linked Retinitis Pigmentosa. Adv Exp Med Biol. 2018;1085:31–5.CrossRef Tsang SH, Sharma T. X-linked Retinitis Pigmentosa. Adv Exp Med Biol. 2018;1085:31–5.CrossRef
8.
go back to reference Webb TR, Parfitt DA, Gardner JC, Martinez A, Bevilacqua D, Davidson AE, et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet. 2012;21(16):3647–54.CrossRef Webb TR, Parfitt DA, Gardner JC, Martinez A, Bevilacqua D, Davidson AE, et al. Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X-linked retinitis pigmentosa (RP23). Hum Mol Genet. 2012;21(16):3647–54.CrossRef
9.
go back to reference Megaw RD, Soares DC, Wright AF. RPGR: its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015;138:32–41.CrossRef Megaw RD, Soares DC, Wright AF. RPGR: its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res. 2015;138:32–41.CrossRef
10.
go back to reference Patnaik SR, Raghupathy RK, Zhang X, et al. The role of RPGR and its interacting proteins in Ciliopathies. J Ophthalmol. 2015;2015:414781.PubMedPubMedCentral Patnaik SR, Raghupathy RK, Zhang X, et al. The role of RPGR and its interacting proteins in Ciliopathies. J Ophthalmol. 2015;2015:414781.PubMedPubMedCentral
11.
go back to reference Tzu JH, Arguello T, Berrocal AM, et al. Clinical and Electrophysiologic characteristics of a large kindred with X-linked retinitis Pigmentosa associated with the RPGR locus. Ophthalmic Paediatr Genet. 2014;36(4):321–6.CrossRef Tzu JH, Arguello T, Berrocal AM, et al. Clinical and Electrophysiologic characteristics of a large kindred with X-linked retinitis Pigmentosa associated with the RPGR locus. Ophthalmic Paediatr Genet. 2014;36(4):321–6.CrossRef
12.
go back to reference Yang L, Yin X, Feng L, You D, Wu L, Chen N, et al. Novel mutations of RPGR in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation. PLoS One. 2014;9(1):e85752.CrossRef Yang L, Yin X, Feng L, You D, Wu L, Chen N, et al. Novel mutations of RPGR in Chinese retinitis pigmentosa patients and the genotype-phenotype correlation. PLoS One. 2014;9(1):e85752.CrossRef
13.
go back to reference Sharon D, Bruns GAP, McGee TL, et al. X-linked retinitis pigmentosa: mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Invest Ophthalmol Vis Sci. 2000;41(9):2712–21.PubMed Sharon D, Bruns GAP, McGee TL, et al. X-linked retinitis pigmentosa: mutation spectrum of the RPGR and RP2 genes and correlation with visual function. Invest Ophthalmol Vis Sci. 2000;41(9):2712–21.PubMed
14.
go back to reference Wu DM, Khanna H, tmaca-Sonmez P, et al. Long-term follow-up of a family with dominant X-linked retinitis pigmentosa. Eye (Lond). 2010;24:764–74.CrossRef Wu DM, Khanna H, tmaca-Sonmez P, et al. Long-term follow-up of a family with dominant X-linked retinitis pigmentosa. Eye (Lond). 2010;24:764–74.CrossRef
15.
go back to reference Shifera AS, Kay CN. Early-onset X-linked retinitis Pigmentosa in a heterozygous female harboring an Intronic donor splice site mutation in the retinitis Pigmentosa GTPase regulator gene. Ophthalmic Paediatr Genet. 2015;36(3):251–6.CrossRef Shifera AS, Kay CN. Early-onset X-linked retinitis Pigmentosa in a heterozygous female harboring an Intronic donor splice site mutation in the retinitis Pigmentosa GTPase regulator gene. Ophthalmic Paediatr Genet. 2015;36(3):251–6.CrossRef
16.
go back to reference Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG, et al. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54(2):1411–6.CrossRef Churchill JD, Bowne SJ, Sullivan LS, Lewis RA, Wheaton DK, Birch DG, et al. Mutations in the X-linked retinitis pigmentosa genes RPGR and RP2 found in 8.5% of families with a provisional diagnosis of autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2013;54(2):1411–6.CrossRef
17.
go back to reference Li L, Xiao X, Li S, Jia X, Wang P, Guo X, et al. Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One. 2011;6(5):e19458.CrossRef Li L, Xiao X, Li S, Jia X, Wang P, Guo X, et al. Detection of variants in 15 genes in 87 unrelated Chinese patients with Leber congenital amaurosis. PLoS One. 2011;6(5):e19458.CrossRef
18.
go back to reference Zhang Q, Giacalone JC, Searby C, et al. Disruption of RPGR protein interaction network is the common feature of RPGR missense variations that cause XLRP. Proc Natl Acad Sci U S A. 2019;116:1353–60.CrossRef Zhang Q, Giacalone JC, Searby C, et al. Disruption of RPGR protein interaction network is the common feature of RPGR missense variations that cause XLRP. Proc Natl Acad Sci U S A. 2019;116:1353–60.CrossRef
19.
go back to reference Murga-Zamalloa CA, Atkins SJ, Peranen J, et al. Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: implications for cilia dysfunction and photoreceptor degeneration. Hum Mol Genet. 2010;19(18):3591–8.CrossRef Murga-Zamalloa CA, Atkins SJ, Peranen J, et al. Interaction of retinitis pigmentosa GTPase regulator (RPGR) with RAB8A GTPase: implications for cilia dysfunction and photoreceptor degeneration. Hum Mol Genet. 2010;19(18):3591–8.CrossRef
20.
go back to reference Fahim AT, Bowne SJ, Sullivan LS, et al. Polymorphic variation of RPGRIP1L and IQCB1 as modifiers of X-linked retinitis pigmentosa caused by mutations in RPGR. Adv Exp Med Biol. 2012;723(723):313–20.CrossRef Fahim AT, Bowne SJ, Sullivan LS, et al. Polymorphic variation of RPGRIP1L and IQCB1 as modifiers of X-linked retinitis pigmentosa caused by mutations in RPGR. Adv Exp Med Biol. 2012;723(723):313–20.CrossRef
21.
go back to reference Rachel RA, Li T, Swaroop A. Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia. 2012;1:22.CrossRef Rachel RA, Li T, Swaroop A. Photoreceptor sensory cilia and ciliopathies: focus on CEP290, RPGR and their interacting proteins. Cilia. 2012;1:22.CrossRef
22.
go back to reference Lee JJ, Seo S. PDE6D binds to the C-terminus of RPGR in a prenylation-dependent manner. EMBO Rep. 2015;16(12):1581–2.CrossRef Lee JJ, Seo S. PDE6D binds to the C-terminus of RPGR in a prenylation-dependent manner. EMBO Rep. 2015;16(12):1581–2.CrossRef
23.
go back to reference Raghupathy RK, Zhang X, Liu F, et al. Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish. Sci Rep. 2017;7(1):16881.CrossRef Raghupathy RK, Zhang X, Liu F, et al. Rpgrip1 is required for rod outer segment development and ciliary protein trafficking in zebrafish. Sci Rep. 2017;7(1):16881.CrossRef
24.
go back to reference Lyraki R, Megaw R, Hurd T. Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans. 2016;44(5):1235.CrossRef Lyraki R, Megaw R, Hurd T. Disease mechanisms of X-linked retinitis pigmentosa due to RP2 and RPGR mutations. Biochem Soc Trans. 2016;44(5):1235.CrossRef
25.
go back to reference Nguyen LS, Wilkinson MF, Gecz J. Nonsense-mediated mRNA decay: Inter-individual variability and human disease. Neurosci Biobehav Rev. 2014;46(Part 2, Sp. Iss. SI):175–86.CrossRef Nguyen LS, Wilkinson MF, Gecz J. Nonsense-mediated mRNA decay: Inter-individual variability and human disease. Neurosci Biobehav Rev. 2014;46(Part 2, Sp. Iss. SI):175–86.CrossRef
26.
go back to reference Hu F, Zeng XY, Liu LL, et al. Genetic analysis of Chinese families reveals a novel truncation allele of the retinitis pigmentosa GTPase regulator gene. Int J Ophthalmol. 2014;7(5):753–8.PubMedPubMedCentral Hu F, Zeng XY, Liu LL, et al. Genetic analysis of Chinese families reveals a novel truncation allele of the retinitis pigmentosa GTPase regulator gene. Int J Ophthalmol. 2014;7(5):753–8.PubMedPubMedCentral
27.
go back to reference Ferreira PA. Insights into X-linked retinitis pigmentosa type 3, allied diseases and underlying pathomechanisms. Hum Mol Genet. 2005;14 Spec No. 2:R259–67.CrossRef Ferreira PA. Insights into X-linked retinitis pigmentosa type 3, allied diseases and underlying pathomechanisms. Hum Mol Genet. 2005;14 Spec No. 2:R259–67.CrossRef
28.
go back to reference Fahim AT, Bowne SJ, Sullivan LS, et al. Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS One. 2011;6(8):e23021.CrossRef Fahim AT, Bowne SJ, Sullivan LS, et al. Allelic heterogeneity and genetic modifier loci contribute to clinical variation in males with X-linked retinitis pigmentosa due to RPGR mutations. PLoS One. 2011;6(8):e23021.CrossRef
29.
go back to reference Thiadens AA, Soerjoesing GG, Florijn RJ, et al. Clinical course of cone dystrophy caused by mutations in the RPGR gene. Graefes Arch Clin Exp Ophthalmol. 2011;249(10):1527–35.CrossRef Thiadens AA, Soerjoesing GG, Florijn RJ, et al. Clinical course of cone dystrophy caused by mutations in the RPGR gene. Graefes Arch Clin Exp Ophthalmol. 2011;249(10):1527–35.CrossRef
30.
go back to reference Talib M, van Schooneveld MJ, Thiadens AA, et al. Clinical and genetic characteristics of male patients with rpgr-associated retinal dystrophies: A Long-Term Follow-up Study. Retina. 2018;1. Talib M, van Schooneveld MJ, Thiadens AA, et al. Clinical and genetic characteristics of male patients with rpgr-associated retinal dystrophies: A Long-Term Follow-up Study. Retina. 2018;1.
31.
go back to reference Birtel J, Eisenberger T, Gliem M, et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep. 2018;8:4824.CrossRef Birtel J, Eisenberger T, Gliem M, et al. Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep. 2018;8:4824.CrossRef
32.
go back to reference Shu X, Black GC, Rice JM, et al. RPGR mutation analysis and disease: an update. Hum Mutat. 2007;28:322–8.CrossRef Shu X, Black GC, Rice JM, et al. RPGR mutation analysis and disease: an update. Hum Mutat. 2007;28:322–8.CrossRef
33.
go back to reference Branham K, Othman M, Brumm M, et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53(13):8232–7.CrossRef Branham K, Othman M, Brumm M, et al. Mutations in RPGR and RP2 account for 15% of males with simplex retinal degenerative disease. Invest Ophthalmol Vis Sci. 2012;53(13):8232–7.CrossRef
34.
go back to reference Rozet JM, Perrault I, Gigarel N, Souied E, Ghazi I, Gerber S, et al. Dominant X linked retinitis pigmentosa is frequently accounted for by truncating mutations in exon ORF15 of the RPGR gene. J Med Genet. 2002;39(4):284–5.CrossRef Rozet JM, Perrault I, Gigarel N, Souied E, Ghazi I, Gerber S, et al. Dominant X linked retinitis pigmentosa is frequently accounted for by truncating mutations in exon ORF15 of the RPGR gene. J Med Genet. 2002;39(4):284–5.CrossRef
35.
go back to reference Hong DH, Pawlyk BS, Adamian M, Li T. Dominant, gain-of-function mutant produced by truncation of RPGR. Invest Ophthalmol Vis Sci. 2004;45(1):36–41.CrossRef Hong DH, Pawlyk BS, Adamian M, Li T. Dominant, gain-of-function mutant produced by truncation of RPGR. Invest Ophthalmol Vis Sci. 2004;45(1):36–41.CrossRef
36.
go back to reference Banin E, Mizrahi-Meissonnier L, Neis R, Silverstein S, Magyar I, Abeliovich D, et al. A non-ancestral RPGR missense mutation in families with either recessive or semi-dominant X-linked retinitis pigmentosa. Am J Med Genet A. 2007;143A(11):1150–8.CrossRef Banin E, Mizrahi-Meissonnier L, Neis R, Silverstein S, Magyar I, Abeliovich D, et al. A non-ancestral RPGR missense mutation in families with either recessive or semi-dominant X-linked retinitis pigmentosa. Am J Med Genet A. 2007;143A(11):1150–8.CrossRef
37.
go back to reference Parmeggiani F, Barbaro V, De NK, et al. Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia. Sci Rep. 2016;6:39179.CrossRef Parmeggiani F, Barbaro V, De NK, et al. Identification of novel X-linked gain-of-function RPGR-ORF15 mutation in Italian family with retinitis pigmentosa and pathologic myopia. Sci Rep. 2016;6:39179.CrossRef
38.
go back to reference Sheng X, Li Z, Zhang X, et al. A novel mutation in retinitis pigmentosa GTPase regulator gene with a distinctive retinitis pigmentosa phenotype in a Chinese family. Mol Vis. 2010;16:1620–8.PubMedPubMedCentral Sheng X, Li Z, Zhang X, et al. A novel mutation in retinitis pigmentosa GTPase regulator gene with a distinctive retinitis pigmentosa phenotype in a Chinese family. Mol Vis. 2010;16:1620–8.PubMedPubMedCentral
39.
go back to reference Li Y, Dong B, Hu AL, et al. A novel RPGR gene mutation in a Chinese family with X-linked dominant retinitis pigmentosa. Zhonghua yi xue yi chuan xue za zhi. 2005;22(4):396–8.PubMed Li Y, Dong B, Hu AL, et al. A novel RPGR gene mutation in a Chinese family with X-linked dominant retinitis pigmentosa. Zhonghua yi xue yi chuan xue za zhi. 2005;22(4):396–8.PubMed
40.
go back to reference Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res. 2016;150:149–65.CrossRef Jones BW, Pfeiffer RL, Ferrell WD, et al. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res. 2016;150:149–65.CrossRef
41.
go back to reference Hendriks M, Verhoeven VJM, Buitendijk GHS, et al. Development of refractive errors-what can we learn from inherited retinal Dystrophies? Am J Ophthalmol. 2017;182:81–9.CrossRef Hendriks M, Verhoeven VJM, Buitendijk GHS, et al. Development of refractive errors-what can we learn from inherited retinal Dystrophies? Am J Ophthalmol. 2017;182:81–9.CrossRef
Metadata
Title
Novel mutations of RPGR in Chinese families with X-linked retinitis pigmentosa
Authors
Zhimeng Zhang
Hehua Dai
Lei Wang
Tianchang Tao
Jing Xu
Xiaowei Sun
Liping Yang
Genlin Li
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2019
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-019-1250-7

Other articles of this Issue 1/2019

BMC Ophthalmology 1/2019 Go to the issue