Skip to main content
Top
Published in: BMC Ophthalmology 1/2019

Open Access 01-12-2019 | Vitrectomy | Research article

Differential expression of connective tissue growth factor and hepatocyte growth factor in the vitreous of patients with high myopia versus vitreomacular interface disease

Authors: Xinyi Ding, Rong Zhang, Shujie Zhang, Hong Zhuang, Gezhi Xu

Published in: BMC Ophthalmology | Issue 1/2019

Login to get access

Abstract

Background

To determine the levels of connective tissue growth factor (CTGF) and hepatocyte growth factor (HGF) in the vitreous of patients with high myopia, in comparison with those with a vitreomacular interface disease (VMID).

Methods

Patients with either high myopia (high myopia group) or a VMID (VMID group) were included in this study. Each of the two groups were further subdivided into two subgroups: group A (high myopia with macular hole), group B (high myopia with macular retinoschisis), group C (idiopathic macular hole), and group D (idiopathic epiretinal membrane). Vitreal specimens were collected during vitrectomy, and enzyme-linked immunosorbent assay was used to quantitatively measure the CTGF and HGF levels in the vitreous.

Results

The average axial length was markedly longer in the high myopia group than in the VMID group. The vitreal CTGF level was significantly higher in the high myopia group than in the VMID group. Subgroup analysis revealed significantly higher vitreal CTGF in group A than in the other three subgroups. The vitreal HGF level was not significantly different between the high myopia and VMID groups, but was significantly higher in group D than in group C in the subgroup analysis. Correlation analysis showed that the vitreal CTGF level was positively correlated with the axial length.

Conclusions

The vitreal CTGF level is elevated in highly myopic eyes and may be related to the pathogenesis of high myopia, whereas increased expression of HGF may be involved in the development of idiopathic epiretinal membrane.
Literature
1.
go back to reference Chen M, Wu A, Zhang L, Wang W, Chen X, Yu X, Wang K. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol. 2018;18(1):159.CrossRef Chen M, Wu A, Zhang L, Wang W, Chen X, Yu X, Wang K. The increasing prevalence of myopia and high myopia among high school students in Fenghua city, eastern China: a 15-year population-based survey. BMC Ophthalmol. 2018;18(1):159.CrossRef
2.
go back to reference Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.CrossRef Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–42.CrossRef
3.
go back to reference Qin Y, Zhu M, Qu X, Xu G, Yu Y, Witt RE, Wang W. Regional macular light sensitivity changes in myopic Chinese adults: an MP1 study. Invest Ophthalmol Vis Sci. 2010;51(9):4451–7.CrossRef Qin Y, Zhu M, Qu X, Xu G, Yu Y, Witt RE, Wang W. Regional macular light sensitivity changes in myopic Chinese adults: an MP1 study. Invest Ophthalmol Vis Sci. 2010;51(9):4451–7.CrossRef
4.
go back to reference Crim N, Esposito E, Monti R, Correa LJ, Serra HM, Urrets-Zavalia JA. Myopia as a risk factor for subsequent retinal tears in the course of a symptomatic posterior vitreous detachment. BMC Ophthalmol. 2017;17(1):226.CrossRef Crim N, Esposito E, Monti R, Correa LJ, Serra HM, Urrets-Zavalia JA. Myopia as a risk factor for subsequent retinal tears in the course of a symptomatic posterior vitreous detachment. BMC Ophthalmol. 2017;17(1):226.CrossRef
5.
go back to reference Xu L, Li Y, Wang S, Wang Y, Wang Y, Jonas JB. Characteristics of highly myopic eyes: the Beijing eye study. Ophthalmology. 2007;114(1):121–6.CrossRef Xu L, Li Y, Wang S, Wang Y, Wang Y, Jonas JB. Characteristics of highly myopic eyes: the Beijing eye study. Ophthalmology. 2007;114(1):121–6.CrossRef
6.
go back to reference Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 2004;279(18):18121–6.CrossRef Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 2004;279(18):18121–6.CrossRef
7.
go back to reference Jobling AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function. Exp Eye Res. 2009;88(3):458–66.CrossRef Jobling AI, Wan R, Gentle A, Bui BV, McBrien NA. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function. Exp Eye Res. 2009;88(3):458–66.CrossRef
8.
go back to reference Siegwart JT Jr, Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci. 2005;46(10):3484–92.CrossRef Siegwart JT Jr, Norton TT. Selective regulation of MMP and TIMP mRNA levels in tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci. 2005;46(10):3484–92.CrossRef
9.
go back to reference Zhuang H, Zhang R, Shu Q, Jiang R, Chang Q, Huang X, Jiang C, Xu G. Changes of TGF-beta2, MMP-2, and TIMP-2 levels in the vitreous of patients with high myopia. Graefes Arch Clin Exp Ophthalmol. 2014;252(11):1763–7.CrossRef Zhuang H, Zhang R, Shu Q, Jiang R, Chang Q, Huang X, Jiang C, Xu G. Changes of TGF-beta2, MMP-2, and TIMP-2 levels in the vitreous of patients with high myopia. Graefes Arch Clin Exp Ophthalmol. 2014;252(11):1763–7.CrossRef
10.
go back to reference Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.CrossRef Grotendorst GR. Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine Growth Factor Rev. 1997;8(3):171–9.CrossRef
11.
go back to reference Heng NH, Zahlten J, Cordes V, Ong MM, Goh BT, N'Guessan PD, Pischon N. Effects of enamel matrix derivative and transforming growth factor-beta1 on connective tissue growth factor in human periodontal ligament fibroblasts. J Periodontol. 2015;86(4):569–77.CrossRef Heng NH, Zahlten J, Cordes V, Ong MM, Goh BT, N'Guessan PD, Pischon N. Effects of enamel matrix derivative and transforming growth factor-beta1 on connective tissue growth factor in human periodontal ligament fibroblasts. J Periodontol. 2015;86(4):569–77.CrossRef
12.
go back to reference Cui Q, Wang Z, Jiang D, Qu L, Guo J, Li Z. HGF inhibits TGF-beta1-induced myofibroblast differentiation and ECM deposition via MMP-2 in Achilles tendon in rat. Eur J Appl Physiol. 2011;111(7):1457–63.CrossRef Cui Q, Wang Z, Jiang D, Qu L, Guo J, Li Z. HGF inhibits TGF-beta1-induced myofibroblast differentiation and ECM deposition via MMP-2 in Achilles tendon in rat. Eur J Appl Physiol. 2011;111(7):1457–63.CrossRef
13.
go back to reference Li XJ, Yang XP, Wan GM, Wang YY, Zhang JS. Expression of hepatocyte growth factor and its receptor c-met in lens-induced myopia in Guinea pigs. Chin Med J. 2013;126(23):4524–7.PubMed Li XJ, Yang XP, Wan GM, Wang YY, Zhang JS. Expression of hepatocyte growth factor and its receptor c-met in lens-induced myopia in Guinea pigs. Chin Med J. 2013;126(23):4524–7.PubMed
14.
go back to reference Chen BY, Wang CY, Chen WY, Ma JX. Altered TGF-beta2 and bFGF expression in scleral desmocytes from an experimentally-induced myopia guinea pig model. Graefes Arch Clin Exp Ophthalmol. 2013;251(4):1133–44.CrossRef Chen BY, Wang CY, Chen WY, Ma JX. Altered TGF-beta2 and bFGF expression in scleral desmocytes from an experimentally-induced myopia guinea pig model. Graefes Arch Clin Exp Ophthalmol. 2013;251(4):1133–44.CrossRef
15.
go back to reference Zhao F, Zhou Q, Reinach PS, Yang J, Ma L, Wang X, Wen Y, Srinivasalu N, Qu J, Zhou X. Cause and effect relationship between changes in scleral matrix Metallopeptidase-2 expression and myopia development in mice. Am J Pathol. 2018;188(8):1754–67.CrossRef Zhao F, Zhou Q, Reinach PS, Yang J, Ma L, Wang X, Wen Y, Srinivasalu N, Qu J, Zhou X. Cause and effect relationship between changes in scleral matrix Metallopeptidase-2 expression and myopia development in mice. Am J Pathol. 2018;188(8):1754–67.CrossRef
16.
go back to reference Liu HH, Kenning MS, Jobling AI, McBrien NA, Gentle A. Reduced scleral TIMP-2 expression is associated with myopia development: TIMP-2 supplementation stabilizes scleral biomarkers of myopia and limits myopia development. Invest Ophthalmol Vis Sci. 2017;58(4):1971–81.CrossRef Liu HH, Kenning MS, Jobling AI, McBrien NA, Gentle A. Reduced scleral TIMP-2 expression is associated with myopia development: TIMP-2 supplementation stabilizes scleral biomarkers of myopia and limits myopia development. Invest Ophthalmol Vis Sci. 2017;58(4):1971–81.CrossRef
17.
go back to reference van Setten GB, Trost A, Schrödl F, Kaser-Eichberger A, Bogner B, M v S, Heindl LM, Grabner G, Reitsamer HA. Immunohistochemical detection of CTGF in the human eye. Curr Eye Res. 2016;41(12):1571–9.CrossRef van Setten GB, Trost A, Schrödl F, Kaser-Eichberger A, Bogner B, M v S, Heindl LM, Grabner G, Reitsamer HA. Immunohistochemical detection of CTGF in the human eye. Curr Eye Res. 2016;41(12):1571–9.CrossRef
18.
go back to reference Gibson DJ, Pi L, Sriram S, Mao C, Petersen BE, Scott EW, Leask A, Schultz GS. Conditional knockout of CTGF affects corneal wound healing. Invest Ophthalmol Vis Sci. 2014;55(4):2062–70.CrossRef Gibson DJ, Pi L, Sriram S, Mao C, Petersen BE, Scott EW, Leask A, Schultz GS. Conditional knockout of CTGF affects corneal wound healing. Invest Ophthalmol Vis Sci. 2014;55(4):2062–70.CrossRef
19.
go back to reference Hinton DR, Spee C, He S, Weitz S, Usinger W, LaBree L, Oliver N, Lim JI. Accumulation of NH2-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care. 2004;27(3):758–64.CrossRef Hinton DR, Spee C, He S, Weitz S, Usinger W, LaBree L, Oliver N, Lim JI. Accumulation of NH2-terminal fragment of connective tissue growth factor in the vitreous of patients with proliferative diabetic retinopathy. Diabetes Care. 2004;27(3):758–64.CrossRef
20.
go back to reference Watanabe D, Takagi H, Suzuma K, Oh H, Ohashi H, Honda Y. Expression of connective tissue growth factor and its potential role in choroidal neovascularization. Retina. 2005;25(7):911–8.CrossRef Watanabe D, Takagi H, Suzuma K, Oh H, Ohashi H, Honda Y. Expression of connective tissue growth factor and its potential role in choroidal neovascularization. Retina. 2005;25(7):911–8.CrossRef
21.
go back to reference Liu Y, Liu H, Meyer C, Li J, Nadalin S, Königsrainer A, Weng H, Dooley S, ten Dijke P. Transforming growth factor-beta (TGF-beta)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem. 2013;288(42):30708–19.CrossRef Liu Y, Liu H, Meyer C, Li J, Nadalin S, Königsrainer A, Weng H, Dooley S, ten Dijke P. Transforming growth factor-beta (TGF-beta)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem. 2013;288(42):30708–19.CrossRef
22.
go back to reference Lin SC, Chou HC, Chiang BL, Chen CM. CTGF upregulation correlates with MMP-9 level in airway remodeling in a murine model of asthma. Arch Med Sci. 2017;13(3):670–6.CrossRef Lin SC, Chou HC, Chiang BL, Chen CM. CTGF upregulation correlates with MMP-9 level in airway remodeling in a murine model of asthma. Arch Med Sci. 2017;13(3):670–6.CrossRef
23.
go back to reference Muromachi K, Kamio N, Narita T, Annen-Kamio M, Sugiya H, Matsushima K. MMP-3 provokes CTGF/CCN2 production independently of protease activity and dependently on dynamin-related endocytosis, which contributes to human dental pulp cell migration. J Cell Biochem. 2012;113(4):1348–58.CrossRef Muromachi K, Kamio N, Narita T, Annen-Kamio M, Sugiya H, Matsushima K. MMP-3 provokes CTGF/CCN2 production independently of protease activity and dependently on dynamin-related endocytosis, which contributes to human dental pulp cell migration. J Cell Biochem. 2012;113(4):1348–58.CrossRef
24.
go back to reference Tan TW, Lai CH, Huang CY, Yang WH, Chen HT, Hsu HC, Fong YC, Tang CH. CTGF enhances migration and MMP-13 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Biochem. 2009;107(2):345–56.CrossRef Tan TW, Lai CH, Huang CY, Yang WH, Chen HT, Hsu HC, Fong YC, Tang CH. CTGF enhances migration and MMP-13 up-regulation via alphavbeta3 integrin, FAK, ERK, and NF-kappaB-dependent pathway in human chondrosarcoma cells. J Cell Biochem. 2009;107(2):345–56.CrossRef
25.
go back to reference Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT. CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci. 2009;50(4):1903–10.CrossRef Nagai N, Klimava A, Lee WH, Izumi-Nagai K, Handa JT. CTGF is increased in basal deposits and regulates matrix production through the ERK (p42/p44mapk) MAPK and the p38 MAPK signaling pathways. Invest Ophthalmol Vis Sci. 2009;50(4):1903–10.CrossRef
26.
go back to reference Nishimura M, Ushiyama M, Nanbu A, Yoshimura M. Neovascularization and HGF: neovascularization in proliferative diabetic retinopathy and intraocular HGF. Rinsho Byori. 1998;46(11):1156–61.PubMed Nishimura M, Ushiyama M, Nanbu A, Yoshimura M. Neovascularization and HGF: neovascularization in proliferative diabetic retinopathy and intraocular HGF. Rinsho Byori. 1998;46(11):1156–61.PubMed
27.
go back to reference Colombo ES, Menicucci G, McGuire PG, Das A. Hepatocyte growth factor/scatter factor promotes retinal angiogenesis through increased urokinase expression. Invest Ophthalmol Vis Sci. 2007;48(4):1793–800.CrossRef Colombo ES, Menicucci G, McGuire PG, Das A. Hepatocyte growth factor/scatter factor promotes retinal angiogenesis through increased urokinase expression. Invest Ophthalmol Vis Sci. 2007;48(4):1793–800.CrossRef
28.
go back to reference Iannetti L, Accorinti M, Malagola R, Bozzoni-Pantaleoni F, Da Dalt S, Nicoletti F, Gradini R, Traficante A, Campanella M, Pivetti-Pezzi P. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2011;52(8):5786–9.CrossRef Iannetti L, Accorinti M, Malagola R, Bozzoni-Pantaleoni F, Da Dalt S, Nicoletti F, Gradini R, Traficante A, Campanella M, Pivetti-Pezzi P. Role of the intravitreal growth factors in the pathogenesis of idiopathic epiretinal membrane. Invest Ophthalmol Vis Sci. 2011;52(8):5786–9.CrossRef
29.
go back to reference Zandi S, Tappeiner C, Pfister IB, Despont A, Rieben R, Garweg JG. Vitreal cytokine profile differences between eyes with Epiretinal membranes or macular holes. Invest Ophthalmol Vis Sci. 2016;57(14):6320–6.CrossRef Zandi S, Tappeiner C, Pfister IB, Despont A, Rieben R, Garweg JG. Vitreal cytokine profile differences between eyes with Epiretinal membranes or macular holes. Invest Ophthalmol Vis Sci. 2016;57(14):6320–6.CrossRef
30.
go back to reference Wang L, Dong F, Reinach PS, He D, Zhao X, Chen X, Hu DN, Yan D. MicroRNA-182 suppresses HGF/SF-induced increases in retinal pigment epithelial cell proliferation and migration through targeting c-met. PLoS One. 2016;11(12):e0167684.CrossRef Wang L, Dong F, Reinach PS, He D, Zhao X, Chen X, Hu DN, Yan D. MicroRNA-182 suppresses HGF/SF-induced increases in retinal pigment epithelial cell proliferation and migration through targeting c-met. PLoS One. 2016;11(12):e0167684.CrossRef
31.
go back to reference Liou GI, Matragoon S, Samuel S, Behzadian MA, Tsai NT, Gu X, Roon P, Hunt DM, Hunt RC, Caldwell RB, et al. MAP kinase and beta-catenin signaling in HGF induced RPE migration. Mol Vis. 2002;8:483–93.PubMed Liou GI, Matragoon S, Samuel S, Behzadian MA, Tsai NT, Gu X, Roon P, Hunt DM, Hunt RC, Caldwell RB, et al. MAP kinase and beta-catenin signaling in HGF induced RPE migration. Mol Vis. 2002;8:483–93.PubMed
32.
go back to reference Katsura Y, Okano T, Noritake M, Kosano H, Nishigori H, Kado S, Matsuoka T. Hepatocyte growth factor in vitreous fluid of patients with proliferative diabetic retinopathy and other retinal disorders. Diabetes Care. 1998;21(10):1759–63.CrossRef Katsura Y, Okano T, Noritake M, Kosano H, Nishigori H, Kado S, Matsuoka T. Hepatocyte growth factor in vitreous fluid of patients with proliferative diabetic retinopathy and other retinal disorders. Diabetes Care. 1998;21(10):1759–63.CrossRef
33.
go back to reference Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. Hepatocyte growth factor levels in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol. 2000;129(5):678–80.CrossRef Mitamura Y, Takeuchi S, Matsuda A, Tagawa Y, Mizue Y, Nishihira J. Hepatocyte growth factor levels in the vitreous of patients with proliferative vitreoretinopathy. Am J Ophthalmol. 2000;129(5):678–80.CrossRef
Metadata
Title
Differential expression of connective tissue growth factor and hepatocyte growth factor in the vitreous of patients with high myopia versus vitreomacular interface disease
Authors
Xinyi Ding
Rong Zhang
Shujie Zhang
Hong Zhuang
Gezhi Xu
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Vitrectomy
Published in
BMC Ophthalmology / Issue 1/2019
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-019-1041-1

Other articles of this Issue 1/2019

BMC Ophthalmology 1/2019 Go to the issue