Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Behavior of hyperreflective foci in non-infectious uveitic macular edema, a 12-month follow-up prospective study

Authors: Barbara Berasategui, Alex Fonollosa, Joseba Artaraz, Ioana Ruiz-Arruza, Jose Ríos, Jessica Matas, Victor Llorenç, David Diaz-Valle, Marina Sastre-Ibañez, Pedro Arriola-Villalobos, Alfredo Adan

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

Hyperreflective foci have been described in OCT imaging of patients with retinal vascular diseases. It has been suggested that they may play a role as a prognostic factor of visual outcomes in these diseases. The purpose of this study is to describe the presence of hyperreflective foci in patients with non-infectious uveitic macular edema and evaluate their behavior after treatment.

Methods

We conducted a multicenter, prospective, observational, 12-month follow-up study. Inclusion criteria were age > 18 years and a diagnosis of non-infectious uveitic macular edema, defined as central macular thickness of > 300 μm as measured by OCT and fluid in the macula. Collected data included best corrected visual acuity, central macular thickness and the presence, number and distribution (inner or outer retinal layers) of hyperreflective foci. Evaluations were performed at baseline, and at 1, 3, 6, and 12 months after starting treatment.

Results

We included 24 eyes of 24 patients. The frequency of patients with ≥11 hyperreflective foci was 58.4% at baseline, falling to 20.8% at 12 months. Further, hyperreflective foci were observed in the outer retinal layers in 50% of patients at baseline and just 28.6% at 12 months. Mean LogMAR visual acuity improved from 0.55 (95% CI 0.4–0.71) at baseline to 0.22 (95% CI 0.08–0.35) at 12 months (p < 0.001). Mean central macular thickness decreased from 453.83 μm (95% CI 396.6–511) at baseline to 269.32 μm (95% CI 227.7–310.9) at 12 months (P < 0.001). Central macular thickness was associated with number (p = 0.017) and distribution (p = 0.004) of hyperreflective foci.

Conclusions

We have observed hyperreflective foci in most of our patients with non-infectious uveitic macular edema. During follow-up and after treatment, the number of foci diminished and they tended to be located in the inner layers of the retina.
Literature
1.
2.
go back to reference Tortorella P, D'Ambrosio E, Iannetti L, et al. Correlation between visual acuity, inner segment/outer segment junction, and cone outer segment tips line integrity in uveitic macular edema. Biomed Res Int. 2015;2015:5. Article ID 853728. https://doi.org/10.1155/2015/853728. Tortorella P, D'Ambrosio E, Iannetti L, et al. Correlation between visual acuity, inner segment/outer segment junction, and cone outer segment tips line integrity in uveitic macular edema. Biomed Res Int. 2015;2015:5. Article ID 853728. https://​doi.​org/​10.​1155/​2015/​853728.
3.
go back to reference Munk MR, Bolz M, Huf W, et al. Morphologic and functional evaluations during development, resolution, and relapse of uveitis-associated cystoid macular edema. Retina. 2012;33:1673–83.CrossRef Munk MR, Bolz M, Huf W, et al. Morphologic and functional evaluations during development, resolution, and relapse of uveitis-associated cystoid macular edema. Retina. 2012;33:1673–83.CrossRef
4.
go back to reference Bolz M, Schmidt-Erfurth U, Deak G, et al. Diabetic Retinopathy Research Group Vienna. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914–20.CrossRefPubMed Bolz M, Schmidt-Erfurth U, Deak G, et al. Diabetic Retinopathy Research Group Vienna. Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology. 2009;116:914–20.CrossRefPubMed
5.
go back to reference Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012;32:77–8.CrossRefPubMed Ogino K, Murakami T, Tsujikawa A, et al. Characteristics of optical coherence tomographic hyperreflective foci in retinal vein occlusion. Retina. 2012;32:77–8.CrossRefPubMed
6.
go back to reference Baumüller S, CharbelIssa P, Schmitz-Valckenberg S, Holz FG. Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2. Ophthalmology. 2010;117:2162–8.CrossRefPubMed Baumüller S, CharbelIssa P, Schmitz-Valckenberg S, Holz FG. Outer retinal hyperreflective spots on spectral-domain optical coherence tomography in macular telangiectasia type 2. Ophthalmology. 2010;117:2162–8.CrossRefPubMed
7.
go back to reference Framme C, Wolf S, Wolf-Schnurrbusch U. Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51:5965–9.CrossRefPubMed Framme C, Wolf S, Wolf-Schnurrbusch U. Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2010;51:5965–9.CrossRefPubMed
8.
go back to reference Kang JW, Lee H, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2014;252:1413–21.CrossRefPubMed Kang JW, Lee H, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after intravitreal bevacizumab for macular edema in branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol. 2014;252:1413–21.CrossRefPubMed
9.
go back to reference Vujosevic S, Berton M, Bini S, et al. Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina. 2016;36:1298–308.CrossRefPubMed Vujosevic S, Berton M, Bini S, et al. Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina. 2016;36:1298–308.CrossRefPubMed
10.
go back to reference Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature (SUN) working group. Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol. 2005;40:509–16. Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature (SUN) working group. Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol. 2005;40:509–16.
11.
go back to reference Framme C, Schweizer P, Imesch M, Wolf S, Wolf-Schnurrbusch U. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53:5814–8.CrossRefPubMed Framme C, Schweizer P, Imesch M, Wolf S, Wolf-Schnurrbusch U. Behavior of SD-OCT-detected hyperreflective foci in the retina of anti-VEGF-treated patients with diabetic macular edema. Invest Ophthalmol Vis Sci. 2012;53:5814–8.CrossRefPubMed
12.
go back to reference Uji A, Murakami T, Nishijima K. Et al: association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012;153:710–7.CrossRefPubMed Uji A, Murakami T, Nishijima K. Et al: association between hyperreflective foci in the outer retina, status of photoreceptor layer, and visual acuity in diabetic macular edema. Am J Ophthalmol. 2012;153:710–7.CrossRefPubMed
13.
go back to reference Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics with and without non proliferative diabetic retinopathy: an in vivo study using spectral domain optical coherence tomography. J Diabetes Res. 2103;2013:5. Article ID 491835. https://doi.org/10.1155/2013/491835 Vujosevic S, Bini S, Midena G, et al. Hyperreflective intraretinal spots in diabetics with and without non proliferative diabetic retinopathy: an in vivo study using spectral domain optical coherence tomography. J Diabetes Res. 2103;2013:5. Article ID 491835. https://​doi.​org/​10.​1155/​2013/​491835
14.
go back to reference De Benedetto U, Sacconi R, Pierro L, Lattanzio R, Bandello F. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina. 2015;35:449–53.CrossRefPubMed De Benedetto U, Sacconi R, Pierro L, Lattanzio R, Bandello F. Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina. 2015;35:449–53.CrossRefPubMed
15.
go back to reference Saito M, Barbazetto IA, Spaide RF. Intravitreal cellular infiltrate imaged as punctate spots by spectral-domain optical coherence tomography in eyes with posterior segment inflammatory disease. Retina. 2013;33:559–65.CrossRefPubMed Saito M, Barbazetto IA, Spaide RF. Intravitreal cellular infiltrate imaged as punctate spots by spectral-domain optical coherence tomography in eyes with posterior segment inflammatory disease. Retina. 2013;33:559–65.CrossRefPubMed
16.
go back to reference Chu CJ, Herrmann P, Carvalho LS, et al. Assessment and in vivo scoring of murine experimental autoimmune uveoretinitis using optical coherence tomography. PLoS One. 2013;14(8):e63002.CrossRef Chu CJ, Herrmann P, Carvalho LS, et al. Assessment and in vivo scoring of murine experimental autoimmune uveoretinitis using optical coherence tomography. PLoS One. 2013;14(8):e63002.CrossRef
17.
go back to reference Chatziralli IP, Sergentanis TN, Sivaprasad S. Hyperreflective foci as an independent visual outcome predictor in macular edema due to retinal vascular diseases treated with intravitreal dexamethasone or ranibizumab. Retina. 2016;36:2319–28.CrossRefPubMed Chatziralli IP, Sergentanis TN, Sivaprasad S. Hyperreflective foci as an independent visual outcome predictor in macular edema due to retinal vascular diseases treated with intravitreal dexamethasone or ranibizumab. Retina. 2016;36:2319–28.CrossRefPubMed
18.
go back to reference AbriAghdam K, Pielen A, Framme C, Junker B. Correlation between hyperreflective foci and clinical outcomes in neovascular age-related macular degeneration after switching to aflibercept. Invest Ophthalmol Vis Sci. 2015;56:6448–64455.CrossRef AbriAghdam K, Pielen A, Framme C, Junker B. Correlation between hyperreflective foci and clinical outcomes in neovascular age-related macular degeneration after switching to aflibercept. Invest Ophthalmol Vis Sci. 2015;56:6448–64455.CrossRef
19.
go back to reference Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126:227–32.CrossRefPubMed Zeng HY, Green WR, Tso MO. Microglial activation in human diabetic retinopathy. Arch Ophthalmol. 2008;126:227–32.CrossRefPubMed
20.
go back to reference Rao NA, Kimoto T, Zamir E, et al. Pathogenic role of retinal microglia in experimental uveoretinitis. Invest Ophthalmol Vis Sci. 2003;44:22–31.CrossRefPubMed Rao NA, Kimoto T, Zamir E, et al. Pathogenic role of retinal microglia in experimental uveoretinitis. Invest Ophthalmol Vis Sci. 2003;44:22–31.CrossRefPubMed
21.
go back to reference Ding X, Zhang M, Ruiping G, Xu G, Wu H. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Graefes Arch Clin Exp Ophthalmol. 2017;255:777–88.CrossRefPubMed Ding X, Zhang M, Ruiping G, Xu G, Wu H. Activated microglia induce the production of reactive oxygen species and promote apoptosis of co-cultured retinal microvascular pericytes. Graefes Arch Clin Exp Ophthalmol. 2017;255:777–88.CrossRefPubMed
22.
go back to reference Zhou Y, Ling EA, Deen ST. Dexamethasone suppresses monocyte chemoattractant protein-1 production viamitogen activated protein kinase phosphatase-1 dependent inhibition of JunN-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J Neurochem. 2007;102:667–78.CrossRefPubMed Zhou Y, Ling EA, Deen ST. Dexamethasone suppresses monocyte chemoattractant protein-1 production viamitogen activated protein kinase phosphatase-1 dependent inhibition of JunN-terminal kinase and p38 mitogen-activated protein kinase in activated rat microglia. J Neurochem. 2007;102:667–78.CrossRefPubMed
23.
go back to reference Kang JW, Chung H, Chan Kim H. Correlation of optical coherence tomographic foci with visual outcomes in different patterns of diabetic macular edema. Retina. 2016;36:1630–09.CrossRefPubMed Kang JW, Chung H, Chan Kim H. Correlation of optical coherence tomographic foci with visual outcomes in different patterns of diabetic macular edema. Retina. 2016;36:1630–09.CrossRefPubMed
24.
go back to reference Lee H, Ji B, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after anti-VEGF treatment in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Retina. 2016;36:465–75.CrossRefPubMed Lee H, Ji B, Chung H, Kim HC. Correlation between optical coherence tomographic hyperreflective foci and visual outcomes after anti-VEGF treatment in neovascular age-related macular degeneration and polypoidal choroidal vasculopathy. Retina. 2016;36:465–75.CrossRefPubMed
Metadata
Title
Behavior of hyperreflective foci in non-infectious uveitic macular edema, a 12-month follow-up prospective study
Authors
Barbara Berasategui
Alex Fonollosa
Joseba Artaraz
Ioana Ruiz-Arruza
Jose Ríos
Jessica Matas
Victor Llorenç
David Diaz-Valle
Marina Sastre-Ibañez
Pedro Arriola-Villalobos
Alfredo Adan
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0848-5

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue