Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Assessment of capillary dropout in the superficial retinal capillary plexus by optical coherence tomography angiography in the early stage of diabetic retinopathy

Authors: Ceying Shen, Shu Yan, Min Du, Hong Zhao, Ling Shao, Yibo Hu

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

To assess capillary dropout in the superficial retinal capillary plexus (SCP) by optical coherence tomography angiography (OCTA) in the early stage of diabetic retinopathy (DR).

Methods

This study was a cross-sectional observational study. Patients that underwent OCTA examinations in our hospital between November 2015 and May 2016 were included in the study. The subjects were divided into two groups: A) normal controls (41 eyes of 41 subjects) and B) the DR patients (49 eyes of 49 patients with mild non-proliferative DR (NPDR)). The retinal thickness and SCP vessel density were analyzed using built-in software in nine sections of the macular area; whole scan area; fovea; parafovea; and sub-sections of the parafovea, superior-hemi, inferior-hemi, temporal, superior, nasal, and inferior. The correlation between vessel density and retinal thickness was also analyzed.

Results

The SCP density was significantly lower (P < 0.05) in mild NPDR patients than in normal controls in all areas, with the exception of the fovea (P > 0.05). In the parafovea, superior-hemi, inferior-hemi, temporal, and nasal sectors of group B, the SCP density was negatively correlated with the corresponding retinal thickness (P < 0.05). Specifically, as the SCP density decreased, retinal thickness increased.

Conclusions

In the early stage of NPDR, retinal capillary dropout and retinal thickness changes can be clearly captured and analyzed by OCTA. The results confirm a negative correlation between vessel density and retinal thickness in diabetic patients. This noninvasive technique could be applied for DR detection and monitoring. Further study with a larger sample size is warranted.
Literature
1.
go back to reference Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102:217–29.CrossRefPubMed Puliafito CA, Hee MR, Lin CP, et al. Imaging of macular diseases with optical coherence tomography. Ophthalmology. 1995;102:217–29.CrossRefPubMed
2.
go back to reference Puliafito CA. Optical coherence tomography: 20 years after. Ophthalmic Surg Lasers Imaging. 2010;41(Suppl):S5.CrossRefPubMed Puliafito CA. Optical coherence tomography: 20 years after. Ophthalmic Surg Lasers Imaging. 2010;41(Suppl):S5.CrossRefPubMed
3.
go back to reference Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.CrossRefPubMed Novotny HR, Alvis DL. A method of photographing fluorescence in circulating blood in the human retina. Circulation. 1961;24:82–6.CrossRefPubMed
4.
go back to reference Laatikainen L. The fluorescein angiography revolution: a breakthrough with sustained impact. Acta Ophthalmol Scand. 2004;82:381–92.CrossRefPubMed Laatikainen L. The fluorescein angiography revolution: a breakthrough with sustained impact. Acta Ophthalmol Scand. 2004;82:381–92.CrossRefPubMed
5.
go back to reference Fingler J, Zawadzki RJ, Werner JS, et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. Opt Express. 2009;17:22190–200.CrossRefPubMedPubMedCentral Fingler J, Zawadzki RJ, Werner JS, et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. Opt Express. 2009;17:22190–200.CrossRefPubMedPubMedCentral
6.
go back to reference Wei E, Jia Y, Tan O, et al. Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS One. 2013;8(12):e81343.CrossRefPubMedPubMedCentral Wei E, Jia Y, Tan O, et al. Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography. PLoS One. 2013;8(12):e81343.CrossRefPubMedPubMedCentral
7.
go back to reference Lumbroso B, Huang D, Jia Y, et al. Clinical guide to Angio-OCT “non invasive Dyeless OCT angiography”. New Delhi: India: Jaypee Brothers Medical Publisher (P) Ltd 2015. Lumbroso B, Huang D, Jia Y, et al. Clinical guide to Angio-OCT “non invasive Dyeless OCT angiography”. New Delhi: India: Jaypee Brothers Medical Publisher (P) Ltd 2015.
8.
go back to reference Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude decorrelationangiography with optical coherence tomography. Opt Expres. 2012;20:4710–25.CrossRef Jia Y, Tan O, Tokayer J, et al. Split-spectrum amplitude decorrelationangiography with optical coherence tomography. Opt Expres. 2012;20:4710–25.CrossRef
9.
go back to reference Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography. A technique for noninvasive angiography. Ophthalmology. 2014;121:180–7.CrossRefPubMed Schwartz DM, Fingler J, Kim DY, et al. Phase-variance optical coherence tomography. A technique for noninvasive angiography. Ophthalmology. 2014;121:180–7.CrossRefPubMed
10.
go back to reference Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged byfluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.CrossRefPubMed Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged byfluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133:45–50.CrossRefPubMed
11.
go back to reference Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35:2196–203.CrossRefPubMed Savastano MC, Lumbroso B, Rispoli M. In vivo characterization of retinal vascularization morphology using optical coherence tomography angiography. Retina. 2015;35:2196–203.CrossRefPubMed
12.
go back to reference Arend O, Wolf S, Harris A, et al. The relationship of macularmicrocirculation to visual acuity in diabetic patients. Arch Ophthalmol. 1995;113:610–4.CrossRefPubMed Arend O, Wolf S, Harris A, et al. The relationship of macularmicrocirculation to visual acuity in diabetic patients. Arch Ophthalmol. 1995;113:610–4.CrossRefPubMed
13.
14.
go back to reference Goudot MM, Sikorav A, Semoun O, et al. Parafoveal OCT angiography features in diabetic patients without clinical diabetic retinopathy: a qualitative and quantitative analysis. J Ophthalmol.Volume. 2017; Article ID 8676091, 1-14. Goudot MM, Sikorav A, Semoun O, et al. Parafoveal OCT angiography features in diabetic patients without clinical diabetic retinopathy: a qualitative and quantitative analysis. J Ophthalmol.Volume. 2017; Article ID 8676091, 1-14.
16.
go back to reference Motoharu T, Masako M, Yuichi T. Delineation of capillary dropout in the deep retinal capillary plexus using optical coherence tomography angiography in apatient with Purtscher’s retinopathyexhibiting normal fluorescein angiographyfindings: a case report. BMC Ophthalmol. 2016;16:113.CrossRef Motoharu T, Masako M, Yuichi T. Delineation of capillary dropout in the deep retinal capillary plexus using optical coherence tomography angiography in apatient with Purtscher’s retinopathyexhibiting normal fluorescein angiographyfindings: a case report. BMC Ophthalmol. 2016;16:113.CrossRef
17.
go back to reference Samara WA, Shahlaee A, Adam MK, et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 2017;124(2):235–44.CrossRefPubMed Samara WA, Shahlaee A, Adam MK, et al. Quantification of diabetic macular ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology. 2017;124(2):235–44.CrossRefPubMed
18.
go back to reference Simonett JM, Scarinci F, Picconi F, Giorno P, De Geronimo D, Di Renzo A, et al. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol. 2017;35(Suppl 1):2353. Simonett JM, Scarinci F, Picconi F, Giorno P, De Geronimo D, Di Renzo A, et al. Early microvascular retinal changes in optical coherence tomography angiography in patients with type 1 diabetes mellitus. Acta Ophthalmol. 2017;35(Suppl 1):2353.
19.
go back to reference Carnevali A, Sacconi R, Corbelli E, Tomasso L, Querques L, Zerbini G, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695–702.CrossRefPubMed Carnevali A, Sacconi R, Corbelli E, Tomasso L, Querques L, Zerbini G, et al. Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol. 2017;54(7):695–702.CrossRefPubMed
20.
go back to reference Durbin MK, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6.CrossRefPubMedPubMedCentral Durbin MK, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135(4):370–6.CrossRefPubMedPubMedCentral
21.
go back to reference Zhang M, Hwang TS, Dongye C, Wilson DJ, Huang D, Jia Y. Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest Ophthal Vis Sci. 2016;57(13):5101–6.CrossRefPubMedPubMedCentral Zhang M, Hwang TS, Dongye C, Wilson DJ, Huang D, Jia Y. Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest Ophthal Vis Sci. 2016;57(13):5101–6.CrossRefPubMedPubMedCentral
22.
go back to reference Dubis AM, Hansen BR, Cooper RF, et al. Relationship between the foveal avascular zone and foveal pit Morpholog. IOVS. 2012;53(3):1628–36. Dubis AM, Hansen BR, Cooper RF, et al. Relationship between the foveal avascular zone and foveal pit Morpholog. IOVS. 2012;53(3):1628–36.
23.
go back to reference Yu J, Gu R, Zong Y, et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2016;57:204–10.CrossRef Yu J, Gu R, Zong Y, et al. Relationship between retinal perfusion and retinal thickness in healthy subjects: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci. 2016;57:204–10.CrossRef
24.
go back to reference Matsunaga D, Puliafito CA, Kashani AH. OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):510–5.CrossRefPubMed Matsunaga D, Puliafito CA, Kashani AH. OCT angiography in healthy human subjects. Ophthalmic Surg Lasers Imaging Retina. 2014;45(6):510–5.CrossRefPubMed
Metadata
Title
Assessment of capillary dropout in the superficial retinal capillary plexus by optical coherence tomography angiography in the early stage of diabetic retinopathy
Authors
Ceying Shen
Shu Yan
Min Du
Hong Zhao
Ling Shao
Yibo Hu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0778-2

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue