Skip to main content
Top
Published in: BMC Ophthalmology 1/2018

Open Access 01-12-2018 | Research article

Investigation of the anti-cataractogenic mechanisms of curcumin through in vivo and in vitro studies

Authors: Jing Cao, Tao Wang, Meng Wang

Published in: BMC Ophthalmology | Issue 1/2018

Login to get access

Abstract

Background

Cataract is the leading cause of blindness in elderly people worldwide, especially in developing countries. Studies to identify strategies that can prevent or retard cataract formation are urgently required. This study aimed to investigate the potential mechanism of the cytoprotective effects of curcumin in in vivo and in vitro experiments.

Methods

Male Wistar rats were randomly divided into three groups: the control group, the model group (administered 20 μmol/kg sodium selenite), and the curcumin group (pretreated with 75 mg/kg body weight curcumin 24 h prior to the administration of sodium selenite). The expression levels of heat shock protein 70 (HSP70), the activities of 8-hydroxy-2-deoxyguanosine (8-OHdG), catalase (CAT), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were assessed by using RT-PCR assay and ELISA. In addition, the cell viability, cell apoptosis, and cell cycle were assessed using a CCK-8 assay and flow cytometry in in vitro studies, followed by RT-PCR analysis to identify the mRNA expression levels of caspase 3, Bcl-2 associated X (Bax), B-cell lymphoma 2 (Bcl-2), cyclooxygenase (Cox-2), c-met, and Slug.

Results

Cataract was successfully established in rats of the model group and the curcumin group through intraperitoneal injection of sodium selenite. The expression levels of HSP70 and the activities of 8-OHdG and MDA in the curcumin group were decreased compared with those in the model group, whereas the activities of CAT, SOD, and GSH-Px were significantly higher than those in the model group (P < 0.05). In the in vitro studies, the cell viability and cell apoptosis significantly increased and decreased, respectively, in the curcumin group compared with the model group. Correspondingly, the mRNA expression of caspase-3, Bax, and Cox-2 was lower in the curcumin group than in the model group (P < 0.05).

Conclusions

This study suggested that curcumin attenuated selenite-induced cataract through the reduction of the intracellular production of reactive oxygen species and the protection of cells from oxidative damage.
Literature
1.
go back to reference Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. JAMA. 2003;290(15):2057–60.CrossRefPubMed Congdon NG, Friedman DS, Lietman T. Important causes of visual impairment in the world today. JAMA. 2003;290(15):2057–60.CrossRefPubMed
2.
go back to reference Lamoureux EL, Fenwick E, Pesudovs K, Tan D. The impact of cataract surgery on quality of life. Curr Opin Ophthalmol. 2011;22(1):19–27.CrossRefPubMed Lamoureux EL, Fenwick E, Pesudovs K, Tan D. The impact of cataract surgery on quality of life. Curr Opin Ophthalmol. 2011;22(1):19–27.CrossRefPubMed
3.
go back to reference Apple DJ, Solomon KD, Tetz MR, Assia EI, Holland EY, Legler UF, Tsai JC, Castaneda VE, Hoggatt JP, Kostick AM. Posterior capsule opacification. Surv Ophthalmol. 1992;37(2):73–116.CrossRefPubMed Apple DJ, Solomon KD, Tetz MR, Assia EI, Holland EY, Legler UF, Tsai JC, Castaneda VE, Hoggatt JP, Kostick AM. Posterior capsule opacification. Surv Ophthalmol. 1992;37(2):73–116.CrossRefPubMed
4.
go back to reference Apple DJ, Peng Q, Visessook N, Werner L, Pandey SK, Escobar-Gomez M, Ram J, Whiteside SB, Schoderbeck R, Ready EL, et al. Surgical prevention of posterior capsule opacification. Part 1: progress in eliminating this complication of cataract surgery. J Cataract Refract Surg. 2000;26(2):180–7.CrossRefPubMed Apple DJ, Peng Q, Visessook N, Werner L, Pandey SK, Escobar-Gomez M, Ram J, Whiteside SB, Schoderbeck R, Ready EL, et al. Surgical prevention of posterior capsule opacification. Part 1: progress in eliminating this complication of cataract surgery. J Cataract Refract Surg. 2000;26(2):180–7.CrossRefPubMed
5.
go back to reference Hodge WG. Posterior capsule opacification after cataract surgery. Ophthalmology. 1998;105(6):943–4.CrossRefPubMed Hodge WG. Posterior capsule opacification after cataract surgery. Ophthalmology. 1998;105(6):943–4.CrossRefPubMed
6.
go back to reference Spector A. Review: oxidative stress and disease. J. Ocul. Pharmacol. Ther. official journal of the Association for Ocular Pharmacology and Therapeutics. 2000;16(2):193–201.CrossRef Spector A. Review: oxidative stress and disease. J. Ocul. Pharmacol. Ther. official journal of the Association for Ocular Pharmacology and Therapeutics. 2000;16(2):193–201.CrossRef
7.
go back to reference Babizhayev MA, Deyev AI, Linberg LF. Lipid peroxidation as a possible cause of cataract. Mech Ageing Dev. 1988;44(1):69–89.CrossRefPubMed Babizhayev MA, Deyev AI, Linberg LF. Lipid peroxidation as a possible cause of cataract. Mech Ageing Dev. 1988;44(1):69–89.CrossRefPubMed
8.
go back to reference Awasthi S, Srivatava SK, Piper JT, Singhal SS, Chaubey M, Awasthi YC. Curcumin protects against 4-hydroxy-2-trans-nonenal-induced cataract formation in rat lenses. Am J Clin Nutr. 1996;64(5):761–6.CrossRefPubMed Awasthi S, Srivatava SK, Piper JT, Singhal SS, Chaubey M, Awasthi YC. Curcumin protects against 4-hydroxy-2-trans-nonenal-induced cataract formation in rat lenses. Am J Clin Nutr. 1996;64(5):761–6.CrossRefPubMed
9.
go back to reference Suryanarayana P, Krishnaswamy K, Reddy GB. Effect of curcumin on galactose-induced cataractogenesis in rats. Mol Vis. 2003;9:223–30.PubMed Suryanarayana P, Krishnaswamy K, Reddy GB. Effect of curcumin on galactose-induced cataractogenesis in rats. Mol Vis. 2003;9:223–30.PubMed
10.
go back to reference Kumar PA, Suryanarayana P, Reddy PY, Reddy GB. Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis. 2005;11:561–8.PubMed Kumar PA, Suryanarayana P, Reddy PY, Reddy GB. Modulation of alpha-crystallin chaperone activity in diabetic rat lens by curcumin. Mol Vis. 2005;11:561–8.PubMed
11.
go back to reference Padmaja S, Raju TN. Antioxidant effect of curcumin in selenium induced cataract of Wistar rats. Indian J Exp Biol. 2004;42(6):601–3.PubMed Padmaja S, Raju TN. Antioxidant effect of curcumin in selenium induced cataract of Wistar rats. Indian J Exp Biol. 2004;42(6):601–3.PubMed
12.
go back to reference Manikandan R, Thiagarajan R, Beulaja S, Chindhu S, Mariammal K, Sudhandiran G, Arumugam M. Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar rat pups: an in vitro study using isolated lens. Chem Biol Interact. 2009;181(2):202–9.CrossRefPubMed Manikandan R, Thiagarajan R, Beulaja S, Chindhu S, Mariammal K, Sudhandiran G, Arumugam M. Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar rat pups: an in vitro study using isolated lens. Chem Biol Interact. 2009;181(2):202–9.CrossRefPubMed
13.
go back to reference Doganay S, Borazan M, Iraz M, Cigremis Y. The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr Eye Res. 2006;31(2):147–53.CrossRefPubMed Doganay S, Borazan M, Iraz M, Cigremis Y. The effect of resveratrol in experimental cataract model formed by sodium selenite. Curr Eye Res. 2006;31(2):147–53.CrossRefPubMed
14.
go back to reference Pan Q, Liao X, Liu H, Wang Y, Chen Y, Zhao B, Lazartigues E, Yang Y, Ma X. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am. J. Physiol. Cell Physiol. 2017;312(2):C119–30.CrossRefPubMed Pan Q, Liao X, Liu H, Wang Y, Chen Y, Zhao B, Lazartigues E, Yang Y, Ma X. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am. J. Physiol. Cell Physiol. 2017;312(2):C119–30.CrossRefPubMed
15.
go back to reference Tu LY, Bai HH, Cai JY, Deng SP. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: from macro to nano. Scanning. 2016;38(6):644–53.CrossRefPubMed Tu LY, Bai HH, Cai JY, Deng SP. The mechanism of kaempferol induced apoptosis and inhibited proliferation in human cervical cancer SiHa cell: from macro to nano. Scanning. 2016;38(6):644–53.CrossRefPubMed
16.
go back to reference Liu HZ, Xiao W, Gu YP, Tao YX, Zhang DY, Du H, Shang JH. Polysaccharide from Sepia Esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells. Iranian J. Basic Med. Sci. 2016;19(12):1292–8. Liu HZ, Xiao W, Gu YP, Tao YX, Zhang DY, Du H, Shang JH. Polysaccharide from Sepia Esculenta ink and cisplatin inhibit synergistically proliferation and metastasis of triple-negative breast cancer MDA-MB-231 cells. Iranian J. Basic Med. Sci. 2016;19(12):1292–8.
17.
go back to reference Mahmoud AM, Al-Alem U, Ali MM, Bosland MC. Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation. J Steroid Biochem Mol Biol. 2015;152:62–75.CrossRefPubMedPubMedCentral Mahmoud AM, Al-Alem U, Ali MM, Bosland MC. Genistein increases estrogen receptor beta expression in prostate cancer via reducing its promoter methylation. J Steroid Biochem Mol Biol. 2015;152:62–75.CrossRefPubMedPubMedCentral
18.
go back to reference Doganay S, Turkoz Y, Evereklioglu C, Er H, Bozaran M, Ozerol E. Use of caffeic acid phenethyl ester to prevent sodium-selenite-induced cataract in rat eyes. J Cataract Refract Surg. 2002;28(8):1457–62.CrossRefPubMed Doganay S, Turkoz Y, Evereklioglu C, Er H, Bozaran M, Ozerol E. Use of caffeic acid phenethyl ester to prevent sodium-selenite-induced cataract in rat eyes. J Cataract Refract Surg. 2002;28(8):1457–62.CrossRefPubMed
19.
go back to reference Liao JH, Huang YS, Lin YC, Huang FY, Wu SH, Wu TH. Anticataractogenesis mechanisms of Curcumin and a comparison of its degradation products: an in vitro study. J Agric Food Chem. 2016;64(10):2080–6.CrossRefPubMed Liao JH, Huang YS, Lin YC, Huang FY, Wu SH, Wu TH. Anticataractogenesis mechanisms of Curcumin and a comparison of its degradation products: an in vitro study. J Agric Food Chem. 2016;64(10):2080–6.CrossRefPubMed
20.
go back to reference Bagchi M, Katar M, Maisel H. Effect of exogenous stress on the tissue-cultured mouse lens epithelial cells. J Cell Biochem. 2002;86(2):302–6.CrossRefPubMed Bagchi M, Katar M, Maisel H. Effect of exogenous stress on the tissue-cultured mouse lens epithelial cells. J Cell Biochem. 2002;86(2):302–6.CrossRefPubMed
21.
go back to reference Dean DO, Kent CR, Tytell M. Constitutive and inducible heat shock protein 70 immunoreactivity in the normal rat eye. Invest Ophthalmol Vis Sci. 1999;40(12):2952–62.PubMed Dean DO, Kent CR, Tytell M. Constitutive and inducible heat shock protein 70 immunoreactivity in the normal rat eye. Invest Ophthalmol Vis Sci. 1999;40(12):2952–62.PubMed
22.
go back to reference Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1995;9(12):1173–82.CrossRef Spector A. Oxidative stress-induced cataract: mechanism of action. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1995;9(12):1173–82.CrossRef
23.
go back to reference Manikandan R, Beulaja M, Thiagarajan R, Arumugam M. Effect of curcumin on the modulation of alphaA- and alphaB-crystallin and heat shock protein 70 in selenium-induced cataractogenesis in Wistar rat pups. Mol Vis. 2011;17:388–94.PubMedPubMedCentral Manikandan R, Beulaja M, Thiagarajan R, Arumugam M. Effect of curcumin on the modulation of alphaA- and alphaB-crystallin and heat shock protein 70 in selenium-induced cataractogenesis in Wistar rat pups. Mol Vis. 2011;17:388–94.PubMedPubMedCentral
24.
go back to reference de Jong WW, Hoekman WA, Mulders JW, Bloemendal H. Heat shock response of the rat lens. J Cell Biol. 1986;102(1):104–11.CrossRefPubMed de Jong WW, Hoekman WA, Mulders JW, Bloemendal H. Heat shock response of the rat lens. J Cell Biol. 1986;102(1):104–11.CrossRefPubMed
25.
go back to reference Banh A, Vijayan MM, Sivak JG. Hsp70 in bovine lenses during temperature stress. Mol Vis. 2003;9:323–8.PubMed Banh A, Vijayan MM, Sivak JG. Hsp70 in bovine lenses during temperature stress. Mol Vis. 2003;9:323–8.PubMed
26.
go back to reference Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M. Effect of curcumin on selenite-induced cataractogenesis in Wistar rat pups. Curr Eye Res. 2010;35(2):122–9.CrossRefPubMed Manikandan R, Thiagarajan R, Beulaja S, Sudhandiran G, Arumugam M. Effect of curcumin on selenite-induced cataractogenesis in Wistar rat pups. Curr Eye Res. 2010;35(2):122–9.CrossRefPubMed
27.
go back to reference Lin D, Barnett M, Grauer L, Robben J, Jewell A, Takemoto L, Takemoto DJ. Expression of superoxide dismutase in whole lens prevents cataract formation. Mol Vis. 2005;11:853–8.PubMed Lin D, Barnett M, Grauer L, Robben J, Jewell A, Takemoto L, Takemoto DJ. Expression of superoxide dismutase in whole lens prevents cataract formation. Mol Vis. 2005;11:853–8.PubMed
28.
go back to reference Wang K, Spector A. Alpha-crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci. 1995;36(2):311–21.PubMed Wang K, Spector A. Alpha-crystallin can act as a chaperone under conditions of oxidative stress. Invest Ophthalmol Vis Sci. 1995;36(2):311–21.PubMed
30.
31.
go back to reference Fecondo JV, Augusteyn RC. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens. Exp Eye Res. 1983;36(1):15–23.CrossRefPubMed Fecondo JV, Augusteyn RC. Superoxide dismutase, catalase and glutathione peroxidase in the human cataractous lens. Exp Eye Res. 1983;36(1):15–23.CrossRefPubMed
33.
go back to reference de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005;179(1–2):43–55.CrossRefPubMed de Iongh RU, Wederell E, Lovicu FJ, McAvoy JW. Transforming growth factor-beta-induced epithelial-mesenchymal transition in the lens: a model for cataract formation. Cells Tissues Organs. 2005;179(1–2):43–55.CrossRefPubMed
34.
go back to reference Medvedovic M, Tomlinson CR, Call MK, Grogg M, Tsonis PA. Gene expression and discovery during lens regeneration in mouse: regulation of epithelial to mesenchymal transition and lens differentiation. Mol Vis. 2006;12:422–40.PubMed Medvedovic M, Tomlinson CR, Call MK, Grogg M, Tsonis PA. Gene expression and discovery during lens regeneration in mouse: regulation of epithelial to mesenchymal transition and lens differentiation. Mol Vis. 2006;12:422–40.PubMed
35.
go back to reference Chandler HL, Barden CA, Lu P, Kusewitt DF, Colitz CM. Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition. Mol Vis. 2007;13:677–91.PubMedPubMedCentral Chandler HL, Barden CA, Lu P, Kusewitt DF, Colitz CM. Prevention of posterior capsular opacification through cyclooxygenase-2 inhibition. Mol Vis. 2007;13:677–91.PubMedPubMedCentral
Metadata
Title
Investigation of the anti-cataractogenic mechanisms of curcumin through in vivo and in vitro studies
Authors
Jing Cao
Tao Wang
Meng Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2018
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-018-0711-8

Other articles of this Issue 1/2018

BMC Ophthalmology 1/2018 Go to the issue