Skip to main content
Top
Published in: BMC Ophthalmology 1/2017

Open Access 01-12-2017 | Research article

Analysis of the VSX1 gene in sporadic keratoconus patients from China

Authors: Tao Guan, Xue Wang, Li-Bin Zheng, Hai-Jian Wu, Yu-Feng Yao

Published in: BMC Ophthalmology | Issue 1/2017

Login to get access

Abstract

Background

Keratoconus normally presents as a sporadic disease. Although different studies have found sequence variants of the visual system homeobox 1 (VSX1) gene associated with keratoconus in humans, no research has detected such variants in sporadic keratoconus patients from China. To investigate the possibility of VSX1 being a candidate susceptibility gene for Chinese patients with sporadic keratoconus, we performed sequence screening of this gene in such patients.

Methods

Whole DNA was obtained from the leukocytes in the peripheral venous blood of 50 patients with sporadic keratoconus and 50 control subjects without this ocular disorder. Polymerase chain reaction single-strand conformation polymorphism analysis and direct DNA sequencing technology were used to detect sequence variation in the five exons and splicing regions of the introns of the VSX1 gene. The sequencing results were analyzed using DNAstar software.

Results

One novel missense heterozygous sequence variant (p.Arg131Pro) was found in the first exon of the VSX1 gene in one keratoconus patient. Another heterozygous sequence variant (p.Gly160Val) in the second exon was found in two keratoconus patients. These variants were not detected in the control subjects. In the third intron of the VSX1 gene, c.8326G > A nucleotide substitution (including heterozygous and homozygous change) was also discovered. The frequency of this variation did not differ significantly between patients and controls, it should belong to single-nucleotide polymorphism of the VSX1 gene. Bioinformatic analysis also predicted that one missense sequence variation (p.Arg131Pro) may not cause a pathogenic change.

Conclusions

In this study, we added one novel missense sequence variation (p.Arg131Pro) in the coding region of the VSX1 gene to the range of VSX1 coding region variations observed in patients with sporadic keratoconus from China. Our work suggests that VSX1 sequence variants might be involved in the pathogenesis of sporadic keratoconus, but their precise role in disease causation requires further investigation.
Literature
2.
go back to reference Fung SS, Aiello F, Maurino V. Outcomes of femtosecond laser-assisted mushroom-configuration keratoplasty in advanced keratoconus. Eye (Lond). 2016;30:553–61.CrossRef Fung SS, Aiello F, Maurino V. Outcomes of femtosecond laser-assisted mushroom-configuration keratoplasty in advanced keratoconus. Eye (Lond). 2016;30:553–61.CrossRef
4.
go back to reference Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin N Am. 2003;16:607–20.CrossRef Rabinowitz YS. The genetics of keratoconus. Ophthalmol Clin N Am. 2003;16:607–20.CrossRef
5.
go back to reference Szczotka-Flynn L, Slaughter M, McMahon T, et al. Disease severity and family history in keratoconus. Br J Ophthalmol. 2008;92:1108–11.CrossRefPubMed Szczotka-Flynn L, Slaughter M, McMahon T, et al. Disease severity and family history in keratoconus. Br J Ophthalmol. 2008;92:1108–11.CrossRefPubMed
6.
go back to reference Mocan MC, Yilmaz PT, Irkec M, et al. The significance of Vogt's striae in keratoconus as evaluated by in vivo confocal microscopy. Clin Exp Ophthalmol. 2008;36:329–34.CrossRefPubMed Mocan MC, Yilmaz PT, Irkec M, et al. The significance of Vogt's striae in keratoconus as evaluated by in vivo confocal microscopy. Clin Exp Ophthalmol. 2008;36:329–34.CrossRefPubMed
8.
go back to reference Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, et al. Genetics and clinical characteristics of keratoconus. Acta Dermatovenerol Alp Pannonica Adriat. 2010;19:3–10.PubMed Stabuc-Silih M, Strazisar M, Ravnik-Glavac M, et al. Genetics and clinical characteristics of keratoconus. Acta Dermatovenerol Alp Pannonica Adriat. 2010;19:3–10.PubMed
10.
go back to reference Maharana PK, Agarwal K, Jhanji V, et al. Deep anterior lamellar keratoplasty for keratoconus: a review. Eye Contact Lens. 2014;40:382–9.CrossRefPubMed Maharana PK, Agarwal K, Jhanji V, et al. Deep anterior lamellar keratoplasty for keratoconus: a review. Eye Contact Lens. 2014;40:382–9.CrossRefPubMed
11.
go back to reference Gajecka M, Radhakrishna U, Winters D, et al. Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest Ophthalmol Vis Sci. 2009;50:1531–9.CrossRefPubMed Gajecka M, Radhakrishna U, Winters D, et al. Localization of a gene for keratoconus to a 5.6-Mb interval on 13q32. Invest Ophthalmol Vis Sci. 2009;50:1531–9.CrossRefPubMed
12.
go back to reference Bisceglia L, De Bonis P, Pizzicoli C, et al. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci. 2009;50:1081–6.CrossRefPubMed Bisceglia L, De Bonis P, Pizzicoli C, et al. Linkage analysis in keratoconus: replication of locus 5q21.2 and identification of other suggestive Loci. Invest Ophthalmol Vis Sci. 2009;50:1081–6.CrossRefPubMed
13.
go back to reference Burdon KP, Coster DJ, Charlesworth JC, et al. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum Genet. 2008;124:379–86.CrossRefPubMed Burdon KP, Coster DJ, Charlesworth JC, et al. Apparent autosomal dominant keratoconus in a large Australian pedigree accounted for by digenic inheritance of two novel loci. Hum Genet. 2008;124:379–86.CrossRefPubMed
14.
go back to reference Abu-Amero KK, Kondkar AA, Azad TA, et al. Keratoconus is associated with increased copy number of mitochondrial DNA. Mol Vis. 2014;20:1203–8.PubMedCentralPubMed Abu-Amero KK, Kondkar AA, Azad TA, et al. Keratoconus is associated with increased copy number of mitochondrial DNA. Mol Vis. 2014;20:1203–8.PubMedCentralPubMed
15.
go back to reference Barbaro V, Di Iorio E, Ferrari S, et al. Expression of VSX1 in human corneal keratocytes during differentiation into myofibroblasts in response to wound healing. Invest Ophthalmol Vis Sci. 2006;47:5243–50.CrossRefPubMed Barbaro V, Di Iorio E, Ferrari S, et al. Expression of VSX1 in human corneal keratocytes during differentiation into myofibroblasts in response to wound healing. Invest Ophthalmol Vis Sci. 2006;47:5243–50.CrossRefPubMed
16.
go back to reference Heon E, Greenberg A, Kopp KK, et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002;11:1029–36.CrossRefPubMed Heon E, Greenberg A, Kopp KK, et al. VSX1: a gene for posterior polymorphous dystrophy and keratoconus. Hum Mol Genet. 2002;11:1029–36.CrossRefPubMed
17.
go back to reference Bisceglia L, Ciaschetti M, De Bonis P, et al. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation. Invest Ophthalmol Vis Sci. 2005;46:39–45.CrossRefPubMed Bisceglia L, Ciaschetti M, De Bonis P, et al. VSX1 mutational analysis in a series of Italian patients affected by keratoconus: detection of a novel mutation. Invest Ophthalmol Vis Sci. 2005;46:39–45.CrossRefPubMed
18.
go back to reference Tang YG, Picornell Y, Su X, et al. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea. 2008;27:189–92.CrossRefPubMed Tang YG, Picornell Y, Su X, et al. Three VSX1 gene mutations, L159M, R166W, and H244R, are not associated with keratoconus. Cornea. 2008;27:189–92.CrossRefPubMed
20.
go back to reference Paliwal P, Singh A, Tandon R, et al. A novel VSX1 mutation identified in an individual with keratoconus in India. Mol Vis. 2009;15:2475–9.PubMedCentralPubMed Paliwal P, Singh A, Tandon R, et al. A novel VSX1 mutation identified in an individual with keratoconus in India. Mol Vis. 2009;15:2475–9.PubMedCentralPubMed
21.
go back to reference Stabuc-Silih M, Strazisar M, Hawlina M, et al. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea. 2010;29:172–6.CrossRefPubMed Stabuc-Silih M, Strazisar M, Hawlina M, et al. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea. 2010;29:172–6.CrossRefPubMed
22.
go back to reference Shetty R, Nuijts RM, Nanaiah SG, et al. Two novel missense substitutions in the VSX1 gene: clinical and genetic analysis of families with Keratoconus from India. BMC Med Genet. 2015;16:33–42.CrossRefPubMedCentralPubMed Shetty R, Nuijts RM, Nanaiah SG, et al. Two novel missense substitutions in the VSX1 gene: clinical and genetic analysis of families with Keratoconus from India. BMC Med Genet. 2015;16:33–42.CrossRefPubMedCentralPubMed
23.
go back to reference Delaveri A, Rapti A, Poulou M, et al. BTNL2 gene SNPs as a contributing factor to sarcoidosis pathogenesis in a cohort of Greek patients. Meta Gene. 2014;2:619–30.CrossRefPubMedCentralPubMed Delaveri A, Rapti A, Poulou M, et al. BTNL2 gene SNPs as a contributing factor to sarcoidosis pathogenesis in a cohort of Greek patients. Meta Gene. 2014;2:619–30.CrossRefPubMedCentralPubMed
24.
25.
go back to reference Abu-Amero KK, Kalantan H, Al-Muammar AM. Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol Vis. 2011;17:667–72.PubMedCentralPubMed Abu-Amero KK, Kalantan H, Al-Muammar AM. Analysis of the VSX1 gene in keratoconus patients from Saudi Arabia. Mol Vis. 2011;17:667–72.PubMedCentralPubMed
26.
go back to reference Karolak JA, Polakowski P, Szaflik J, et al. Molecular Screening of Keratoconus Susceptibility Sequence Variants in VSX1, TGFBI, DOCK9, STK24, and IPO5 Genes in Polish Patients and Novel TGFBI Variant Identification. Ophthalmic Genet. 2016;37:37–43.PubMed Karolak JA, Polakowski P, Szaflik J, et al. Molecular Screening of Keratoconus Susceptibility Sequence Variants in VSX1, TGFBI, DOCK9, STK24, and IPO5 Genes in Polish Patients and Novel TGFBI Variant Identification. Ophthalmic Genet. 2016;37:37–43.PubMed
27.
go back to reference Galvis V, Tello A, Prada AM, et al. Changing Trends in Keratoconus Management. Cornea. 2016;35:e6–7.CrossRefPubMed Galvis V, Tello A, Prada AM, et al. Changing Trends in Keratoconus Management. Cornea. 2016;35:e6–7.CrossRefPubMed
28.
go back to reference Pena-Garcia P, Peris-Martinez C, Abbouda A, et al. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech. 2016;49:353–63.CrossRefPubMed Pena-Garcia P, Peris-Martinez C, Abbouda A, et al. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech. 2016;49:353–63.CrossRefPubMed
29.
go back to reference De Bonis P, Laborante A, Pizzicoli C, et al. Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus. Mol Vis. 2011;17:2482–94.PubMedCentralPubMed De Bonis P, Laborante A, Pizzicoli C, et al. Mutational screening of VSX1, SPARC, SOD1, LOX, and TIMP3 in keratoconus. Mol Vis. 2011;17:2482–94.PubMedCentralPubMed
30.
go back to reference Verma A, Das M, Srinivasan M, et al. Investigation of VSX1 sequence variants in South Indian patients with sporadic cases of keratoconus. BMC Res Notes. 2013;6:103.CrossRefPubMedCentralPubMed Verma A, Das M, Srinivasan M, et al. Investigation of VSX1 sequence variants in South Indian patients with sporadic cases of keratoconus. BMC Res Notes. 2013;6:103.CrossRefPubMedCentralPubMed
31.
go back to reference Jeoung JW, Kim MK, Park SS, et al. VSX1 gene and keratoconus: genetic analysis in Korean patients. Cornea. 2012;31:746–50.CrossRefPubMed Jeoung JW, Kim MK, Park SS, et al. VSX1 gene and keratoconus: genetic analysis in Korean patients. Cornea. 2012;31:746–50.CrossRefPubMed
32.
go back to reference Vincent AL, Jordan C, Sheck L, et al. Screening the visual system homeobox 1 gene in keratoconus and posterior polymorphous dystrophy cohorts identifies a novel variant. Mol Vis. 2013;19:852–60.PubMedCentralPubMed Vincent AL, Jordan C, Sheck L, et al. Screening the visual system homeobox 1 gene in keratoconus and posterior polymorphous dystrophy cohorts identifies a novel variant. Mol Vis. 2013;19:852–60.PubMedCentralPubMed
33.
go back to reference Mok JW, Baek SJ, Joo CK. VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet. 2008;53:842–9.CrossRefPubMed Mok JW, Baek SJ, Joo CK. VSX1 gene variants are associated with keratoconus in unrelated Korean patients. J Hum Genet. 2008;53:842–9.CrossRefPubMed
34.
go back to reference Saee-Rad S, Hashemi H, Miraftab M, et al. Mutation analysis of VSX1 and SOD1 in Iranian patients with keratoconus. Mol Vis. 2011;17:3128–36.PubMedCentralPubMed Saee-Rad S, Hashemi H, Miraftab M, et al. Mutation analysis of VSX1 and SOD1 in Iranian patients with keratoconus. Mol Vis. 2011;17:3128–36.PubMedCentralPubMed
35.
go back to reference Paliwal P, Tandon R, Dube D, et al. Familial segregation of a VSX1 mutation adds a new dimension to its role in the causation of keratoconus. Mol Vis. 2011;17:481–5.PubMedCentralPubMed Paliwal P, Tandon R, Dube D, et al. Familial segregation of a VSX1 mutation adds a new dimension to its role in the causation of keratoconus. Mol Vis. 2011;17:481–5.PubMedCentralPubMed
36.
go back to reference Dash DP, George S, O'Prey D, et al. Mutational screening of VSX1 in keratoconus patients from the European population. Eye (Lond). 2010;24:1085–92.CrossRef Dash DP, George S, O'Prey D, et al. Mutational screening of VSX1 in keratoconus patients from the European population. Eye (Lond). 2010;24:1085–92.CrossRef
37.
go back to reference Dehkordi FA, Rashki A, Bagheri N, et al. Study of VSX1 mutations in patients with keratoconus in southwest Iran using PCR-single-strand conformation polymorphism/heteroduplex analysis and sequencing method. Acta Cytol. 2013;57:646–51.CrossRefPubMed Dehkordi FA, Rashki A, Bagheri N, et al. Study of VSX1 mutations in patients with keratoconus in southwest Iran using PCR-single-strand conformation polymorphism/heteroduplex analysis and sequencing method. Acta Cytol. 2013;57:646–51.CrossRefPubMed
38.
go back to reference Eran P, Almogit A, David Z, et al. The D144E substitution in the VSX1 gene: a non-pathogenic variant or a disease causing mutation? Ophthalmic Genet. 2008;29:53–9.CrossRefPubMed Eran P, Almogit A, David Z, et al. The D144E substitution in the VSX1 gene: a non-pathogenic variant or a disease causing mutation? Ophthalmic Genet. 2008;29:53–9.CrossRefPubMed
Metadata
Title
Analysis of the VSX1 gene in sporadic keratoconus patients from China
Authors
Tao Guan
Xue Wang
Li-Bin Zheng
Hai-Jian Wu
Yu-Feng Yao
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2017
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-017-0567-3

Other articles of this Issue 1/2017

BMC Ophthalmology 1/2017 Go to the issue