Skip to main content
Top
Published in: BMC Ophthalmology 1/2016

Open Access 01-12-2016 | Research article

Estimation of axial curvature of anterior sclera: correlation between axial length and anterior scleral curvature as affected by angle kappa

Authors: Sang-Mok Lee, Hyuk Jin Choi, Heejin Choi, Mee Kum Kim, Won Ryang Wee

Published in: BMC Ophthalmology | Issue 1/2016

Login to get access

Abstract

Background

Though the development and fitting of scleral contact lenses are expanding steadily, there is no simple method to provide scleral metrics for scleral contact lens fitting yet. The aim of this study was to establish formulae for estimation of the axial radius of curvature (ARC) of the anterior sclera using ocular biometric parameters that can be easily obtained with conventional devices.

Methods

A semi-automated stitching method and a computational analysis tool for calculating ARC were developed by using the ImageJ and MATLAB software. The ARC of all the ocular surface points were analyzed from the composite horizontal cross-sectional images of the right eyes of 24 volunteers; these measurements were obtained using anterior segment optical coherence tomography for a previous study (AS-OCT; Visante). Ocular biometric parameters were obtained from the same volunteers with slit-scanning topography and partial coherence interferometry. Correlation analysis was performed between the ARC at 8 mm to the axis line (ARC[8]) and other ocular parameters (including age). With ARC obtained on several nasal and temporal points (7.0, 7.5, 8.0, 8.5, and 9.0 mm from the axis line), univariate and multivariate linear regression analyses were performed to develop a model for estimating ARC with the help of ocular biometric parameters.

Results

Axial length, spherical equivalent, and angle kappa showed correlations with temporal ARC[8] (tARC[8]; Pearson’s r = 0.653, −0.579, and −0.341; P = 0.001, 0.015, and 0.015, respectively). White-to-white corneal diameter (WTW) and anterior chamber depth (ACD) showed correlation with nasal ARC[8] (nARC[8]; Pearson’s r = −0.492 and −0.461; P = 0.015 and 0.023, respectively). The formulae for estimating scleral curvatures (tARC, nARC, and average ARC) were developed as a function of axial length, ACD, WTW, and distance from the axis line, with good determinant power (72 − 80 %; SPSS ver. 22.0). Angle kappa showed strong correlation with axial length (Pearson’s r = −0.813, P <0.001), and the different correlation patterns of nasal and temporal ARC with axial length can be explained by the ocular surface deviation represented by angle kappa.

Conclusions

Axial length, ACD, and WTW are useful parameters for estimating the ARC of the anterior sclera, which is important for the haptic design of scleral contact lenses. Angle kappa affects the discrepancies between the nasal and temporal scleral curvature.
Appendix
Available only for authorised users
Literature
1.
go back to reference Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res. 2004;78(3):609–23.CrossRefPubMed Watson PG, Young RD. Scleral structure, organisation and disease. A review. Exp Eye Res. 2004;78(3):609–23.CrossRefPubMed
2.
go back to reference McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–38.CrossRefPubMed McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–38.CrossRefPubMed
3.
go back to reference Sorbara L, Maram J, Fonn D, Woods C, Simpson T. Metrics of the normal cornea: anterior segment imaging with the Visante OCT. Clin Exp Optom. 2010;93(3):150–6.CrossRefPubMed Sorbara L, Maram J, Fonn D, Woods C, Simpson T. Metrics of the normal cornea: anterior segment imaging with the Visante OCT. Clin Exp Optom. 2010;93(3):150–6.CrossRefPubMed
4.
go back to reference Ebneter A, Haner NU, Zinkernagel MS. Metrics of the normal anterior sclera: imaging with optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2015;253(9):1575–80.CrossRefPubMedPubMedCentral Ebneter A, Haner NU, Zinkernagel MS. Metrics of the normal anterior sclera: imaging with optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2015;253(9):1575–80.CrossRefPubMedPubMedCentral
5.
go back to reference Hall LA, Hunt C, Young G, Wolffsohn J. Factors affecting corneoscleral topography. Invest Ophthalmol Vis Sci. 2013;54(5):3691–701.CrossRefPubMed Hall LA, Hunt C, Young G, Wolffsohn J. Factors affecting corneoscleral topography. Invest Ophthalmol Vis Sci. 2013;54(5):3691–701.CrossRefPubMed
6.
go back to reference Hall LA, Young G, Wolffsohn JS, Riley C. The influence of corneoscleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52(9):6801–6.CrossRefPubMed Hall LA, Young G, Wolffsohn JS, Riley C. The influence of corneoscleral topography on soft contact lens fit. Invest Ophthalmol Vis Sci. 2011;52(9):6801–6.CrossRefPubMed
7.
go back to reference Smith GT, Mireskandari K, Pullum KW. Corneal swelling with overnight wear of scleral contact lenses. Cornea. 2004;23(1):29–34.CrossRefPubMed Smith GT, Mireskandari K, Pullum KW. Corneal swelling with overnight wear of scleral contact lenses. Cornea. 2004;23(1):29–34.CrossRefPubMed
8.
go back to reference Luo ZK, Jacobs DS. Current and potential applications of anterior segment optical coherence tomography in contact lens fitting. Semin Ophthalmol. 2012;27(5–6):133–7.CrossRefPubMed Luo ZK, Jacobs DS. Current and potential applications of anterior segment optical coherence tomography in contact lens fitting. Semin Ophthalmol. 2012;27(5–6):133–7.CrossRefPubMed
9.
go back to reference Choi HJ, Lee SM, Lee JY, Lee SY, Kim MK, Wee WR. Measurement of anterior scleral curvature using anterior segment OCT. Optom Vis Sci. 2014;91(7):793–802.CrossRefPubMed Choi HJ, Lee SM, Lee JY, Lee SY, Kim MK, Wee WR. Measurement of anterior scleral curvature using anterior segment OCT. Optom Vis Sci. 2014;91(7):793–802.CrossRefPubMed
10.
go back to reference Gemoules G. A novel method of fitting scleral lenses using high resolution optical coherence tomography. Eye Contact Lens. 2008;34(2):80–3.CrossRefPubMed Gemoules G. A novel method of fitting scleral lenses using high resolution optical coherence tomography. Eye Contact Lens. 2008;34(2):80–3.CrossRefPubMed
11.
go back to reference Thevenaz P, Unser M. User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc Res Tech. 2007;70(2):135–46.CrossRefPubMed Thevenaz P, Unser M. User-friendly semiautomated assembly of accurate image mosaics in microscopy. Microsc Res Tech. 2007;70(2):135–46.CrossRefPubMed
12.
go back to reference Arevalo JF, Ramirez E, Suarez E, Cortez R, Antzoulatos G, Morales-Stopello J, et al. Rhegmatogenous retinal detachment in myopic eyes after laser in situ keratomileusis. Frequency, characteristics, and mechanism. J Cataract Refract Surg. 2001;27(5):674–80.CrossRefPubMed Arevalo JF, Ramirez E, Suarez E, Cortez R, Antzoulatos G, Morales-Stopello J, et al. Rhegmatogenous retinal detachment in myopic eyes after laser in situ keratomileusis. Frequency, characteristics, and mechanism. J Cataract Refract Surg. 2001;27(5):674–80.CrossRefPubMed
13.
go back to reference Lavaque AJ, Di Marco S, Yilmaz T, Liggett PE. Scleral curvature and LASIK. Ophthalmology. 2006;113(1):157.CrossRefPubMed Lavaque AJ, Di Marco S, Yilmaz T, Liggett PE. Scleral curvature and LASIK. Ophthalmology. 2006;113(1):157.CrossRefPubMed
14.
go back to reference Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Experiment Ophthalmol. 2009;37(1):81–9.CrossRefPubMed Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Experiment Ophthalmol. 2009;37(1):81–9.CrossRefPubMed
15.
go back to reference Sng CC, Foo LL, Cheng CY, Allen Jr JC, He M, Krishnaswamy G, et al. Determinants of anterior chamber depth: the Singapore Chinese Eye Study. Ophthalmology. 2012;119(6):1143–50.CrossRefPubMed Sng CC, Foo LL, Cheng CY, Allen Jr JC, He M, Krishnaswamy G, et al. Determinants of anterior chamber depth: the Singapore Chinese Eye Study. Ophthalmology. 2012;119(6):1143–50.CrossRefPubMed
16.
go back to reference Leung CK, Palmiero PM, Weinreb RN, Li H, Sbeity Z, Dorairaj S, et al. Comparisons of anterior segment biometry between Chinese and Caucasians using anterior segment optical coherence tomography. Br J Ophthalmol. 2010;94(9):1184–9. doi:10.1136/bjo.2009.167296.CrossRefPubMed Leung CK, Palmiero PM, Weinreb RN, Li H, Sbeity Z, Dorairaj S, et al. Comparisons of anterior segment biometry between Chinese and Caucasians using anterior segment optical coherence tomography. Br J Ophthalmol. 2010;94(9):1184–9. doi:10.​1136/​bjo.​2009.​167296.CrossRefPubMed
17.
go back to reference Song HT, Kim YJ, Lee SJ, Moon YS. Relations between age, weight, refractive error and eye shape by computerized tomography in children. Korean J Ophthalmol. 2007;21(3):163–8.CrossRefPubMedPubMedCentral Song HT, Kim YJ, Lee SJ, Moon YS. Relations between age, weight, refractive error and eye shape by computerized tomography in children. Korean J Ophthalmol. 2007;21(3):163–8.CrossRefPubMedPubMedCentral
18.
go back to reference Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472–85.CrossRefPubMed Olsen T. Calculation of intraocular lens power: a review. Acta Ophthalmol Scand. 2007;85(5):472–85.CrossRefPubMed
19.
go back to reference Nemeth G, Hassan Z, Szalai E, Berta A, Modis Jr L. Comparative analysis of white-to-white and angle-to-angle distance measurements with partial coherence interferometry and optical coherence tomography. J Cataract Refract Surg. 2010;36(11):1862–6.CrossRefPubMed Nemeth G, Hassan Z, Szalai E, Berta A, Modis Jr L. Comparative analysis of white-to-white and angle-to-angle distance measurements with partial coherence interferometry and optical coherence tomography. J Cataract Refract Surg. 2010;36(11):1862–6.CrossRefPubMed
20.
go back to reference Fotedar R, Wang JJ, Burlutsky G, Morgan IG, Rose K, Wong TY, Mitchell P. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOL Master) in an older white population. Ophthalmology. 2010;117(3):417–23.CrossRefPubMed Fotedar R, Wang JJ, Burlutsky G, Morgan IG, Rose K, Wong TY, Mitchell P. Distribution of axial length and ocular biometry measured using partial coherence laser interferometry (IOL Master) in an older white population. Ophthalmology. 2010;117(3):417–23.CrossRefPubMed
21.
go back to reference Park SH, Park KH, Kim JM, Choi CY. Relation between axial length and ocular parameters. Ophthalmologica. 2010;224(3):188–93.CrossRefPubMed Park SH, Park KH, Kim JM, Choi CY. Relation between axial length and ocular parameters. Ophthalmologica. 2010;224(3):188–93.CrossRefPubMed
22.
go back to reference Tabernero J, Benito A, Nourrit V, Artal P. Instrument for measuring the misalignments of ocular surfaces. Opt Express. 2006;14(22):10945–56.CrossRefPubMed Tabernero J, Benito A, Nourrit V, Artal P. Instrument for measuring the misalignments of ocular surfaces. Opt Express. 2006;14(22):10945–56.CrossRefPubMed
23.
go back to reference Hashemi H, KhabazKhoob M, Yazdani K, Mehravaran S, Jafarzadehpur E, Fotouhi A. Distribution of angle kappa measurements with Orbscan II in a population-based survey. J Refract Surg. 2010;26(12):966–71.CrossRefPubMed Hashemi H, KhabazKhoob M, Yazdani K, Mehravaran S, Jafarzadehpur E, Fotouhi A. Distribution of angle kappa measurements with Orbscan II in a population-based survey. J Refract Surg. 2010;26(12):966–71.CrossRefPubMed
24.
go back to reference Basmak H, Sahin A, Yildirim N, Papakostas TD, Kanellopoulos AJ. Measurement of angle kappa with synoptophore and Orbscan II in a normal population. J Refract Surg. 2007;23(5):456–60.PubMed Basmak H, Sahin A, Yildirim N, Papakostas TD, Kanellopoulos AJ. Measurement of angle kappa with synoptophore and Orbscan II in a normal population. J Refract Surg. 2007;23(5):456–60.PubMed
26.
go back to reference Prakash G, Prakash DR, Agarwal A, Kumar DA, Agarwal A, Jacob S. Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Eye (Lond). 2011;25(9):1187–93.CrossRef Prakash G, Prakash DR, Agarwal A, Kumar DA, Agarwal A, Jacob S. Predictive factor and kappa angle analysis for visual satisfactions in patients with multifocal IOL implantation. Eye (Lond). 2011;25(9):1187–93.CrossRef
27.
go back to reference Karhanova M, Pluhacek F, Mlcak P, Vlacil O, Sin M, Maresova K. The importance of angle kappa evaluation for implantation of diffractive multifocal intra-ocular lenses using pseudophakic eye model. Acta Ophthalmol. 2015;93(2):e123–8.CrossRefPubMed Karhanova M, Pluhacek F, Mlcak P, Vlacil O, Sin M, Maresova K. The importance of angle kappa evaluation for implantation of diffractive multifocal intra-ocular lenses using pseudophakic eye model. Acta Ophthalmol. 2015;93(2):e123–8.CrossRefPubMed
Metadata
Title
Estimation of axial curvature of anterior sclera: correlation between axial length and anterior scleral curvature as affected by angle kappa
Authors
Sang-Mok Lee
Hyuk Jin Choi
Heejin Choi
Mee Kum Kim
Won Ryang Wee
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2016
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-016-0355-5

Other articles of this Issue 1/2016

BMC Ophthalmology 1/2016 Go to the issue