Skip to main content
Top
Published in: BMC Ophthalmology 1/2015

Open Access 01-12-2015 | Research article

Whole-exome sequencing reveals a novel CHM gene mutation in a family with choroideremia initially diagnosed as retinitis pigmentosa

Authors: Hui Guo, Jisheng Li, Fei Gao, Jiangxia Li, Xinyi Wu, Qiji Liu

Published in: BMC Ophthalmology | Issue 1/2015

Login to get access

Abstract

Background

Genomic mutations in about 200 genes are associated with hereditary retinal diseases. In this study, we screened for the disease-causing gene mutation in a family with X-linked retinal degenerative disease.

Methods

Pedigree data were collected and genomic DNA was isolated from peripheral blood of family members, who also underwent comprehensive ophthalmic examination including visual acuity, slit-lamp examination, fundus examination and visual field testing at Qilu Hospital of Shandong University. Whole-exome genomic sequencing was used to screen for gene mutations in the male proband. Sanger sequencing was used to confirm the mutation revealed in this family.

Results

Two affected males underwent ophthalmic examination; retinitis pigmentosa (RP) was diagnosed on the basis of night blindness beginning at an early age, decreasing visual acuity, progressive loss of peripheral vision, attenuation of retinal vessels and pigment disturbance on fundus examination. However, whole-exome sequencing revealed no mutation in RP-associated genes. Instead, we identified a novel hemizygous c.1475_1476insCA mutation in the choroideremia-associated gene (CHM). The mutation was confirmed by Sanger sequencing and further excluded from the possibility as a rare polymorphism. From the genetic data and clinical findings, the diagnosis was corrected to choroideremia (CHM). Further molecular genetic analysis suggested that this novel CHM mutation caused a frame shift (p.Leu492PhefsX7) and encoded a truncated nonfunctional Rab escort protein 1 (REP-1), which caused CHM in this family. Finally, sequencing data for a pregnant female member confirmed that she did not carry the mutation and thus was carrying a healthy infant.

Conclusion

We report a novel CHM mutation, c.1475_1476insCA, identified by whole-exome sequencing in a family with X-linked CHM initially diagnosed as RP. Our findings emphasize the value of a diagnostic approach that associates genetic and ophthalmologic data to facilitate the proper clinical diagnosis of rare hereditary retinal diseases such as CHM.
Literature
1.
go back to reference Prokofyeva E, Wilke R, Lotz G, Troeger E, Strasser T, Zrenner E. An epidemiological approach for the estimation of disease onset in Central Europe in central and peripheral monogenic retinal dystrophies. Graefes Arch Clin Exp Ophthalmol. 2009;247(7):885–94.CrossRefPubMed Prokofyeva E, Wilke R, Lotz G, Troeger E, Strasser T, Zrenner E. An epidemiological approach for the estimation of disease onset in Central Europe in central and peripheral monogenic retinal dystrophies. Graefes Arch Clin Exp Ophthalmol. 2009;247(7):885–94.CrossRefPubMed
4.
go back to reference den Hollander AI, Black A, Bennett J, Cremers FP. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest. 2010;120(9):3042–53.CrossRef den Hollander AI, Black A, Bennett J, Cremers FP. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J Clin Invest. 2010;120(9):3042–53.CrossRef
5.
go back to reference Li S, Guan L, Fang S, Jiang H, Xiao X, Yang J, et al. Exome sequencing reveals CHM mutations in six families with atypical choroideremia initially diagnosed as retinitis pigmentosa. Int J Mol Med. 2014;34(2):573–7.PubMed Li S, Guan L, Fang S, Jiang H, Xiao X, Yang J, et al. Exome sequencing reveals CHM mutations in six families with atypical choroideremia initially diagnosed as retinitis pigmentosa. Int J Mol Med. 2014;34(2):573–7.PubMed
6.
go back to reference Xu Y, Guan L, Shen T, Zhang J, Xiao X, Jiang H, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.CrossRefPubMed Xu Y, Guan L, Shen T, Zhang J, Xiao X, Jiang H, et al. Mutations of 60 known causative genes in 157 families with retinitis pigmentosa based on exome sequencing. Hum Genet. 2014;133(10):1255–71.CrossRefPubMed
7.
go back to reference Roberts MF, Fishman GA, Roberts DK, Heckenlively JR, Weleber RG, Anderson RJ, et al. Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol. 2002;86(6):658–62.CrossRefPubMedPubMedCentral Roberts MF, Fishman GA, Roberts DK, Heckenlively JR, Weleber RG, Anderson RJ, et al. Retrospective, longitudinal, and cross sectional study of visual acuity impairment in choroideraemia. Br J Ophthalmol. 2002;86(6):658–62.CrossRefPubMedPubMedCentral
8.
go back to reference Coussa RG, Traboulsi EI. Choroideremia: a review of general findings and pathogenesis. Ophthalmic Genet. 2012;33(2):57–65.CrossRefPubMed Coussa RG, Traboulsi EI. Choroideremia: a review of general findings and pathogenesis. Ophthalmic Genet. 2012;33(2):57–65.CrossRefPubMed
9.
go back to reference MacDonald IM, Sereda C, McTaggart K, Mah D. Choroideremia gene testing. Expert Rev Mol Diagn. 2004;4(4):478–84.CrossRefPubMed MacDonald IM, Sereda C, McTaggart K, Mah D. Choroideremia gene testing. Expert Rev Mol Diagn. 2004;4(4):478–84.CrossRefPubMed
10.
go back to reference Cremers FP, van de Pol DJ, van Kerkhoff LP, Wieringa B, Ropers HH. Cloning of a gene that is rearranged in patients with choroideraemia. Nature. 1990;347(6294):674–7.CrossRefPubMed Cremers FP, van de Pol DJ, van Kerkhoff LP, Wieringa B, Ropers HH. Cloning of a gene that is rearranged in patients with choroideraemia. Nature. 1990;347(6294):674–7.CrossRefPubMed
11.
go back to reference van den Hurk JA, Schwartz M, van Bokhoven H, van de Pol TJ, Bogerd L, Pinckers AJ, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene. Hum Mutat. 1997;9(2):110–7.CrossRefPubMed van den Hurk JA, Schwartz M, van Bokhoven H, van de Pol TJ, Bogerd L, Pinckers AJ, et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP-1) gene. Hum Mutat. 1997;9(2):110–7.CrossRefPubMed
12.
go back to reference Seabra MC, Brown MS, Goldstein JL. Retinal degeneration in choroideremia: deficiency of rab geranylgeranyl transferase. Science. 1993;259(5093):377–81.CrossRefPubMed Seabra MC, Brown MS, Goldstein JL. Retinal degeneration in choroideremia: deficiency of rab geranylgeranyl transferase. Science. 1993;259(5093):377–81.CrossRefPubMed
13.
go back to reference Furgoch MJ, Mewes-Ares J, Radziwon A, Macdonald IM. Molecular genetic diagnostic techniques in choroideremia. Mol Vis. 2014;20:535–44.PubMedPubMedCentral Furgoch MJ, Mewes-Ares J, Radziwon A, Macdonald IM. Molecular genetic diagnostic techniques in choroideremia. Mol Vis. 2014;20:535–44.PubMedPubMedCentral
14.
go back to reference MacDonald IM, Hume S, Chan S, Seabra MC. Choroideremia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015.2003 Feb 21 [Updated 2015 Feb 26]. MacDonald IM, Hume S, Chan S, Seabra MC. Choroideremia. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2015.2003 Feb 21 [Updated 2015 Feb 26].
15.
go back to reference Seabra MC, Ho YK, Anant JS. Deficient geranylgeranylation of Ram/Rab27 in choroideremia. J Biol Chem. 1995;270(41):24420–7.CrossRefPubMed Seabra MC, Ho YK, Anant JS. Deficient geranylgeranylation of Ram/Rab27 in choroideremia. J Biol Chem. 1995;270(41):24420–7.CrossRefPubMed
16.
go back to reference Tolmachova T, Anders R, Abrink M, Bugeon L, Dallman MJ, Futter CE, et al. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J Clin Invest. 2006;116(2):386–94.CrossRefPubMedPubMedCentral Tolmachova T, Anders R, Abrink M, Bugeon L, Dallman MJ, Futter CE, et al. Independent degeneration of photoreceptors and retinal pigment epithelium in conditional knockout mouse models of choroideremia. J Clin Invest. 2006;116(2):386–94.CrossRefPubMedPubMedCentral
17.
go back to reference van den Hurk JA, van de Pol DJ, Wissinger B, van Driel MA, Hoefsloot LH, de Wijs IJ, et al. Novel types of mutation in the choroideremia ( CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum Genet. 2003;113(3):268–75.CrossRefPubMed van den Hurk JA, van de Pol DJ, Wissinger B, van Driel MA, Hoefsloot LH, de Wijs IJ, et al. Novel types of mutation in the choroideremia ( CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum Genet. 2003;113(3):268–75.CrossRefPubMed
18.
go back to reference MacDonald IM, Mah DY, Ho YK, Lewis RA, Seabra MC. A practical diagnostic test for choroideremia. Ophthalmology. 1998;105(9):1637–40.CrossRefPubMed MacDonald IM, Mah DY, Ho YK, Lewis RA, Seabra MC. A practical diagnostic test for choroideremia. Ophthalmology. 1998;105(9):1637–40.CrossRefPubMed
19.
go back to reference Sergeev YV, Smaoui N, Sui R, Stiles D, Gordiyenko N, Strunnikova N, et al. The functional effect of pathogenic mutations in Rab escort protein 1. Mutat Res. 2009;665(1–2):44–50.CrossRefPubMedPubMedCentral Sergeev YV, Smaoui N, Sui R, Stiles D, Gordiyenko N, Strunnikova N, et al. The functional effect of pathogenic mutations in Rab escort protein 1. Mutat Res. 2009;665(1–2):44–50.CrossRefPubMedPubMedCentral
20.
go back to reference Iino Y, Fujimaki T, Fujiki K, Murakami A. A novel mutation (967-970 + 2)delAAAGGT in the choroideremia gene found in a Japanese family and related clinical findings. Jpn J Ophthalmol. 2008;52(4):289–97.CrossRefPubMed Iino Y, Fujimaki T, Fujiki K, Murakami A. A novel mutation (967-970 + 2)delAAAGGT in the choroideremia gene found in a Japanese family and related clinical findings. Jpn J Ophthalmol. 2008;52(4):289–97.CrossRefPubMed
21.
go back to reference Abe T, Yoshida M, Yoshioka Y, Wakusawa R, Tokita-Ishikawa Y, Seto H, et al. Iris pigment epithelial cell transplantation for degenerative retinal diseases. Prog Retin Eye Res. 2007;26(3):302–21.CrossRefPubMed Abe T, Yoshida M, Yoshioka Y, Wakusawa R, Tokita-Ishikawa Y, Seto H, et al. Iris pigment epithelial cell transplantation for degenerative retinal diseases. Prog Retin Eye Res. 2007;26(3):302–21.CrossRefPubMed
Metadata
Title
Whole-exome sequencing reveals a novel CHM gene mutation in a family with choroideremia initially diagnosed as retinitis pigmentosa
Authors
Hui Guo
Jisheng Li
Fei Gao
Jiangxia Li
Xinyi Wu
Qiji Liu
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2015
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-015-0081-4

Other articles of this Issue 1/2015

BMC Ophthalmology 1/2015 Go to the issue