Skip to main content
Top
Published in: BMC Ophthalmology 1/2015

Open Access 01-12-2015 | Research article

Effect of outdoor activity on myopia onset and progression in school-aged children in northeast china: the sujiatun eye care study

Authors: Ju-Xiang Jin, Wen-Juan Hua, Xuan Jiang, Xiao-Yan Wu, Ji-Wen Yang, Guo-Peng Gao, Yun Fang, Chen-Lu Pei, Song Wang, Jie-Zheng Zhang, Li-Ming Tao, Fang-Biao Tao

Published in: BMC Ophthalmology | Issue 1/2015

Login to get access

Abstract

Background

Due to its high prevalence and associated sight-threatening pathologies, myopia has emerged as a major health issue in East Asia. The purpose was to test the impact on myopia development of a school-based intervention program aimed at increasing the time student spent outdoors.

Methods

A total of 3051 students of two primary (grades 1-5, aged 6-11) and two junior high schools (grades 7-8, aged 12-14) in both urban and rural Northeast China were enrolled. The intervention group (n = 1735) unlike the control group (n = 1316) was allowed two additional 20-min recess programs outside the classroom. A detailed questionnaire was administered to parents and children. Uncorrected visual acuity (UCVA) was measured using an E Standard Logarithm Vision Acuity Chart (GB11533-2011) at baseline, 6-month and 1-year intervals. A random subsample (n = 391) participated in the clinic visits and underwent cycloplegia at the beginning and after 1 year.

Results

The mean UCVA for the entire intervention group was significantly better than the entire control group after 1 year (P < 0.001). In the subgroup study, new onset of myopia and changes in refractive error towards myopia were direction during the study period was significantly lower in the intervention group than in the control group (3.70 % vs. 8.50 %, P = 0.048; -0.10 ± 0.65 D/year vs. -0.27 ± 0.52 D/year, P = 0.005). Changes in axial length and IOP were also significantly lower following the intervention group (0.16 ± 0.30 mm/year vs. 0.21 ± 0.21 mm/year, P = 0.034; -0.05 ± 2.78 mmHg/year vs. 0.67 ± 2.21 mmHg/year, P = 0.006).

Conclusions

Increasing outdoor activities prevented myopia onset and development, as well as axial growth and elevated IOP in children.

Trial registration

Current controlled trials NCT02271373.
Appendix
Available only for authorised users
Literature
1.
go back to reference You QS, Wu LJ, Duan JL, Luo YX, Liu LJ, Li X, et al. Prevalence of myopia in school children in greater Beijing: the Beijing childhood Eye study. Acta Ophthalmol. 2014;92(5):e398–406.CrossRefPubMed You QS, Wu LJ, Duan JL, Luo YX, Liu LJ, Li X, et al. Prevalence of myopia in school children in greater Beijing: the Beijing childhood Eye study. Acta Ophthalmol. 2014;92(5):e398–406.CrossRefPubMed
2.
go back to reference He M, Huang W, Zheng Y, Huang L, Ellwein LB. Refractive error and visual impairment in school children in rural southern China. Ophthalmology. 2007;114(2):374–82.CrossRefPubMed He M, Huang W, Zheng Y, Huang L, Ellwein LB. Refractive error and visual impairment in school children in rural southern China. Ophthalmology. 2007;114(2):374–82.CrossRefPubMed
3.
go back to reference He M, Zheng Y, Xiang F. Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci. 2009;86(1):40–4.CrossRefPubMed He M, Zheng Y, Xiang F. Prevalence of myopia in urban and rural children in mainland China. Optom Vis Sci. 2009;86(1):40–4.CrossRefPubMed
4.
go back to reference Guo Y, Liu LJ, Xu L, Lv YY, Tang P, Feng Y, et al. Outdoor activity and myopia among primary students in rural and urban regions of Beijing. Ophthalmology. 2013;120(2):277–83.CrossRefPubMed Guo Y, Liu LJ, Xu L, Lv YY, Tang P, Feng Y, et al. Outdoor activity and myopia among primary students in rural and urban regions of Beijing. Ophthalmology. 2013;120(2):277–83.CrossRefPubMed
5.
go back to reference Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004;33(1):27–33.PubMed Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singapore. 2004;33(1):27–33.PubMed
7.
go back to reference Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 2012;32(1):3–16.CrossRefPubMed Pan CW, Ramamurthy D, Saw SM. Worldwide prevalence and risk factors for myopia. Ophthalmic Physiol Opt. 2012;32(1):3–16.CrossRefPubMed
9.
go back to reference Gwiazda J, Hyman L, Dong LM, Everett D, Norton T, Kurtz D, et al. Factors associated with high myopia after 7 years of follow-up in the correction of myopia evaluation trial (COMET) cohort. Ophthalmic Epidemiol. 2007;14(4):230–7.CrossRefPubMed Gwiazda J, Hyman L, Dong LM, Everett D, Norton T, Kurtz D, et al. Factors associated with high myopia after 7 years of follow-up in the correction of myopia evaluation trial (COMET) cohort. Ophthalmic Epidemiol. 2007;14(4):230–7.CrossRefPubMed
10.
go back to reference Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DT, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005;46(1):51–7.CrossRefPubMed Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DT, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005;46(1):51–7.CrossRefPubMed
11.
go back to reference Liang CL, Yen E, Su JY, Liu C, Chang TY, Park N, et al. Impact of family history of high myopia on level and onset of myopia. Invest Ophthalmol Vis Sci. 2004;45(10):3446–52.CrossRefPubMed Liang CL, Yen E, Su JY, Liu C, Chang TY, Park N, et al. Impact of family history of high myopia on level and onset of myopia. Invest Ophthalmol Vis Sci. 2004;45(10):3446–52.CrossRefPubMed
12.
go back to reference Braun CI, Freidlin V, Sperduto RD, Milton RC, Strahlman ER. The progression of myopia in school age children: data from the Columbia medical plan. Ophthalmic Epidemiol. 1996;3(1):13–21.CrossRefPubMed Braun CI, Freidlin V, Sperduto RD, Milton RC, Strahlman ER. The progression of myopia in school age children: data from the Columbia medical plan. Ophthalmic Epidemiol. 1996;3(1):13–21.CrossRefPubMed
13.
go back to reference Jensen H. Myopia in teenagers. An eight-year follow-up study on myopia progression and risk factors. Acta Ophthalmol Scand. 1995;73(5):389–93.CrossRefPubMed Jensen H. Myopia in teenagers. An eight-year follow-up study on myopia progression and risk factors. Acta Ophthalmol Scand. 1995;73(5):389–93.CrossRefPubMed
14.
go back to reference Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–91.CrossRefPubMed Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–91.CrossRefPubMed
15.
go back to reference Schache M, Richardson AJ, Mitchell P, Wang JJ, Rochtchina E, Viswanathan AC, et al. Genetic association of refractive error and axial length with 15q14 but not 15q25 in the blue mountains Eye study cohort. Ophthalmology. 2013;120(2):292–7.CrossRefPubMed Schache M, Richardson AJ, Mitchell P, Wang JJ, Rochtchina E, Viswanathan AC, et al. Genetic association of refractive error and axial length with 15q14 but not 15q25 in the blue mountains Eye study cohort. Ophthalmology. 2013;120(2):292–7.CrossRefPubMed
16.
go back to reference Rose KA, Morgan IG, Smith W, Mitchell P. High heritability of myopia does not preclude rapid changes in prevalence. Clin Exp Ophthalmol. 2002;30(3):168–72.CrossRefPubMed Rose KA, Morgan IG, Smith W, Mitchell P. High heritability of myopia does not preclude rapid changes in prevalence. Clin Exp Ophthalmol. 2002;30(3):168–72.CrossRefPubMed
17.
go back to reference Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126(4):527–30.CrossRefPubMed Rose KA, Morgan IG, Smith W, Burlutsky G, Mitchell P, Saw SM. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch Ophthalmol. 2008;126(4):527–30.CrossRefPubMed
18.
go back to reference Jones-Jordan LA, Mitchell GL, Cotter SA, Kleinstein RN, Manny RE, Mutti DO, et al. Visual activity before and after the onset of juvenile myopia. Invest Ophthalmol Vis Sci. 2011;52(3):1841–50.CrossRefPubMedPubMedCentral Jones-Jordan LA, Mitchell GL, Cotter SA, Kleinstein RN, Manny RE, Mutti DO, et al. Visual activity before and after the onset of juvenile myopia. Invest Ophthalmol Vis Sci. 2011;52(3):1841–50.CrossRefPubMedPubMedCentral
19.
go back to reference Guggenheim JA, Northstone K, McMahon G, Ness AR, Deere K, Mattocks C, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Vis Sci. 2012;53(6):2856–65.CrossRefPubMedPubMedCentral Guggenheim JA, Northstone K, McMahon G, Ness AR, Deere K, Mattocks C, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study. Invest Ophthalmol Vis Sci. 2012;53(6):2856–65.CrossRefPubMedPubMedCentral
20.
go back to reference Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology. 2012;119(10):2141–51.CrossRefPubMed Sherwin JC, Reacher MH, Keogh RH, Khawaja AP, Mackey DA, Foster PJ. The association between time spent outdoors and myopia in children and adolescents: a systematic review and meta-analysis. Ophthalmology. 2012;119(10):2141–51.CrossRefPubMed
21.
go back to reference Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120(5):1080–5.CrossRefPubMed Wu PC, Tsai CL, Wu HL, Yang YH, Kuo HK. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology. 2013;120(5):1080–5.CrossRefPubMed
22.
go back to reference Morgan IG, Xiang F, Rose KA, Chen Q, He M. Two year results from the Guangzhou outdoor activity longitudinal study (GOALS). ARVO Meet Abstracts. 2012;53:2735. Morgan IG, Xiang F, Rose KA, Chen Q, He M. Two year results from the Guangzhou outdoor activity longitudinal study (GOALS). ARVO Meet Abstracts. 2012;53:2735.
23.
go back to reference Napper GA, Brennan NA, Barrington M, Squires MA, Vessey GA, Vingrys AJ. The effect of an interrupted daily period of normal visual stimulation on form deprivation myopia in chicks. Vision Res. 1997;37(12):1557–64.CrossRefPubMed Napper GA, Brennan NA, Barrington M, Squires MA, Vessey GA, Vingrys AJ. The effect of an interrupted daily period of normal visual stimulation on form deprivation myopia in chicks. Vision Res. 1997;37(12):1557–64.CrossRefPubMed
24.
go back to reference Ashby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(11):5348–54.CrossRefPubMed Ashby R, Ohlendorf A, Schaeffel F. The effect of ambient illuminance on the development of deprivation myopia in chicks. Invest Ophthalmol Vis Sci. 2009;50(11):5348–54.CrossRefPubMed
25.
go back to reference Institution of National Physical Fitness and Health Surveillance. Reports on the physical fitness and health research of Chinese school students (2010). Beijing: Higher education press; 2012. p. 30–1. Institution of National Physical Fitness and Health Surveillance. Reports on the physical fitness and health research of Chinese school students (2010). Beijing: Higher education press; 2012. p. 30–1.
26.
go back to reference Ip JM, Saw SM, Rose KA, Morgan IG, Kifley A, Wang JJ, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci. 2008;49(7):2903–10.CrossRefPubMed Ip JM, Saw SM, Rose KA, Morgan IG, Kifley A, Wang JJ, et al. Role of near work in myopia: findings in a sample of Australian school children. Invest Ophthalmol Vis Sci. 2008;49(7):2903–10.CrossRefPubMed
27.
go back to reference French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:58–68.CrossRefPubMed French AN, Ashby RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:58–68.CrossRefPubMed
28.
go back to reference COMET Study Group. Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Invest Ophthalmol Vis Sci. 2013;54(13):7871–84.CrossRef COMET Study Group. Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). Invest Ophthalmol Vis Sci. 2013;54(13):7871–84.CrossRef
29.
go back to reference Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–85.CrossRefPubMed Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115(8):1279–85.CrossRefPubMed
30.
go back to reference Dirani M, Tong L, Gazzard G, Zhang X, Chia A, Young TL, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009;93(8):997–1000.CrossRefPubMed Dirani M, Tong L, Gazzard G, Zhang X, Chia A, Young TL, et al. Outdoor activity and myopia in Singapore teenage children. Br J Ophthalmol. 2009;93(8):997–1000.CrossRefPubMed
31.
go back to reference Dong F, Zhi Z, Pan M, Xie R, Qin X, Lu R, et al. Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol Vis. 2011;17:2824–34.PubMedPubMedCentral Dong F, Zhi Z, Pan M, Xie R, Qin X, Lu R, et al. Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Mol Vis. 2011;17:2824–34.PubMedPubMedCentral
32.
go back to reference Nickla DL, Totonelly K. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Exp Eye Res. 2011;93(5):782–5.CrossRefPubMedPubMedCentral Nickla DL, Totonelly K. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Exp Eye Res. 2011;93(5):782–5.CrossRefPubMedPubMedCentral
33.
go back to reference Smith 3rd EL, Hung LF, Huang J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2012;53(1):421–8.CrossRefPubMedPubMedCentral Smith 3rd EL, Hung LF, Huang J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys. Invest Ophthalmol Vis Sci. 2012;53(1):421–8.CrossRefPubMedPubMedCentral
34.
go back to reference Liao CC, Chen LJ, Yu JH, Lin JC. Refractive error change and its association with ocular and general parameters in junior high school students in Taiwan. Jpn J Ophthalmol. 2014;58(4):375–80.CrossRefPubMed Liao CC, Chen LJ, Yu JH, Lin JC. Refractive error change and its association with ocular and general parameters in junior high school students in Taiwan. Jpn J Ophthalmol. 2014;58(4):375–80.CrossRefPubMed
35.
go back to reference Fulk GW, Cyert LA, Parker DE. A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria. Optom Vis Sci. 2000;77(8):395–401.CrossRefPubMed Fulk GW, Cyert LA, Parker DE. A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria. Optom Vis Sci. 2000;77(8):395–401.CrossRefPubMed
36.
go back to reference Gwiazda J, Hyman L, Hussein M, Everett D, Norton TT, Kurtz D, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci. 2003;44(4):1492–500.CrossRefPubMed Gwiazda J, Hyman L, Hussein M, Everett D, Norton TT, Kurtz D, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci. 2003;44(4):1492–500.CrossRefPubMed
37.
go back to reference Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48(6):2510–9.CrossRefPubMedPubMedCentral Mutti DO, Hayes JR, Mitchell GL, Jones LA, Moeschberger ML, Cotter SA, et al. Refractive error, axial length, and relative peripheral refractive error before and after the onset of myopia. Invest Ophthalmol Vis Sci. 2007;48(6):2510–9.CrossRefPubMedPubMedCentral
38.
go back to reference Altan C, Demirel B, Azman E, Satana B, Bozkurt E, Demirok A, et al. Biomechanical properties of axially myopic cornea. Eur J Ophthalmol. 2012;22 Suppl 7:S24–8.CrossRefPubMed Altan C, Demirel B, Azman E, Satana B, Bozkurt E, Demirok A, et al. Biomechanical properties of axially myopic cornea. Eur J Ophthalmol. 2012;22 Suppl 7:S24–8.CrossRefPubMed
39.
go back to reference Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, et al. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye (Lond). 2011;25(8):1083–9.CrossRef Jiang Z, Shen M, Mao G, Chen D, Wang J, Qu J, et al. Association between corneal biomechanical properties and myopia in Chinese subjects. Eye (Lond). 2011;25(8):1083–9.CrossRef
40.
go back to reference Wong YZ, Lam AK: The Roles of Cornea and Axial Length in Corneal Hysteresis among Emmetropes and High Myopes: A Pilot Study. Curr Eye Res 2015;40(3):282-9 Wong YZ, Lam AK: The Roles of Cornea and Axial Length in Corneal Hysteresis among Emmetropes and High Myopes: A Pilot Study. Curr Eye Res 2015;40(3):282-9
41.
go back to reference Memarzadeh F, Ying-Lai M, Azen SP, Varma R. Associations with intraocular pressure in Latinos: the Los Angeles Latino Eye study. Am J Ophthalmol. 2008;146(1):69–76.CrossRefPubMedPubMedCentral Memarzadeh F, Ying-Lai M, Azen SP, Varma R. Associations with intraocular pressure in Latinos: the Los Angeles Latino Eye study. Am J Ophthalmol. 2008;146(1):69–76.CrossRefPubMedPubMedCentral
42.
go back to reference Kim MJ, Park KH, Kim CY, Jeoung JW, Kim SH: The distribution of intraocular pressure and associated systemic factors in a Korean population: The Korea National Health and Nutrition Examination Survey. Acta Ophthalmol 2014;92(7):e507-13. Kim MJ, Park KH, Kim CY, Jeoung JW, Kim SH: The distribution of intraocular pressure and associated systemic factors in a Korean population: The Korea National Health and Nutrition Examination Survey. Acta Ophthalmol 2014;92(7):e507-13.
43.
go back to reference Xu L, Li J, Zheng Y, Cui T, Zhu J, Ma K, et al. Intraocular pressure in Northern China in an urban and rural population: the Beijing eye study. Am J Ophthalmol. 2005;140(5):913–5.CrossRefPubMed Xu L, Li J, Zheng Y, Cui T, Zhu J, Ma K, et al. Intraocular pressure in Northern China in an urban and rural population: the Beijing eye study. Am J Ophthalmol. 2005;140(5):913–5.CrossRefPubMed
44.
go back to reference Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the tajimi study. Ophthalmology. 2004;111(9):1641–8.PubMed Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, et al. The prevalence of primary open-angle glaucoma in Japanese: the tajimi study. Ophthalmology. 2004;111(9):1641–8.PubMed
Metadata
Title
Effect of outdoor activity on myopia onset and progression in school-aged children in northeast china: the sujiatun eye care study
Authors
Ju-Xiang Jin
Wen-Juan Hua
Xuan Jiang
Xiao-Yan Wu
Ji-Wen Yang
Guo-Peng Gao
Yun Fang
Chen-Lu Pei
Song Wang
Jie-Zheng Zhang
Li-Ming Tao
Fang-Biao Tao
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Ophthalmology / Issue 1/2015
Electronic ISSN: 1471-2415
DOI
https://doi.org/10.1186/s12886-015-0052-9

Other articles of this Issue 1/2015

BMC Ophthalmology 1/2015 Go to the issue