Skip to main content
Top
Published in: BMC Cancer 1/2020

01-12-2020 | Breast Cancer | Research article

Incidence of advanced-stage breast cancer in regular participants of a mammography screening program: a prospective register-based study

Authors: Laura Khil, Jan Heidrich, Ina Wellmann, Vanessa Kääb-Sanyal, Stefanie Weigel, Walter Heindel, Hans-Werner Hense, Oliver Heidinger

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

The European Guidelines for breast cancer screening suggest that the impact of population-based mammography screening programmes (MSP) may be assessed using the relative reduction in the incidence of advanced breast cancer (ABC, that is, stage UICC II and higher) as a surrogate indicator of screening effectiveness.

Methods

This prospective, population register-based study contained individual data of 1,200,246 women (aged 50–69 years) who attended the initial prevalence screening between 2005 and 2009. Of them, 498,029 women returned for the regular (i.e., within 24 months) first subsequent, and 208,561 for the regular second subsequent incidence screenings. The incidence rate of ABC was calculated for the 24-months period following, but not including, the initial screening by incorporating all interval ABCs and all ABCs detected at the regular first incidence screening; the ABC rate for the second 24-months period was determined in the same way, including ABCs detected in the interval after the first and, respectively, at the second incidence screening. The relative reduction in the ABC incidence was derived by comparing the age-standardized rates in these two periods with an age-standardized reference incidence rate, observed in the target population before the MSP implementation. The strengths and weaknesses of this particular study design were contrasted with a recently published checklist of main methodological problems affecting studies of the effect of MSP on ABC incidence.

Results

The age-standardized ABC incidence rate was 291.6 per 100,000 women for the 24-months period subsequent to the initial screening, and 275.0/100,000 for the 24-months period following the first subsequent screening. Compared to the 2-year incidence of 349.4/100,000 before the start of the MSP, this amounted to a relative reduction of 16.5 and 21.3%, respectively, in the incidence of ABC among regular MSP participants.

Conclusions

The design employed in this study avoids some of the substantial methodological limitations that compromised previous observational studies. Nevertheless, specific limitations prevail that demand a cautious interpretation of the results. Therefore, the study findings, indicating a reduction in ABC for regular MSP participants, need to be followed with respect to potential impacts on breast cancer mortality rates.
Literature
1.
go back to reference Perry N, Karsa P-B-d W-T-H-v, Europäische Kommission. editorsEuropean guidelines for quality assurance in breast cancer screening and diagnosis. 4th ed. Luxembourg: Off. for Official Publ. of the Europ. Communities; 2006. Perry N, Karsa P-B-d W-T-H-v, Europäische Kommission. editorsEuropean guidelines for quality assurance in breast cancer screening and diagnosis. 4th ed. Luxembourg: Off. for Official Publ. of the Europ. Communities; 2006.
2.
go back to reference Autier P, Héry C, Haukka J, Boniol M, Byrnes G. Advanced breast Cancer and breast Cancer mortality in randomized controlled trials on mammography screening. J Clin Oncol. 2009;27:5919–23.CrossRef Autier P, Héry C, Haukka J, Boniol M, Byrnes G. Advanced breast Cancer and breast Cancer mortality in randomized controlled trials on mammography screening. J Clin Oncol. 2009;27:5919–23.CrossRef
3.
go back to reference Tabár L, Yen AM-F, Wu WY-Y, Chen SL-S, Chiu SY-H, Fann JC-Y, et al. Insights from the breast Cancer screening trials: how screening affects the natural history of breast Cancer and implications for evaluating service screening programs. Breast J. 2015;21:13–20.CrossRef Tabár L, Yen AM-F, Wu WY-Y, Chen SL-S, Chiu SY-H, Fann JC-Y, et al. Insights from the breast Cancer screening trials: how screening affects the natural history of breast Cancer and implications for evaluating service screening programs. Breast J. 2015;21:13–20.CrossRef
4.
go back to reference Puliti D, Bucchi L, Mancini S, Paci E, Baracco S, Campari C, et al. Advanced breast cancer rates in the epoch of service screening: the 400,000 women cohort study from Italy. Eur J Cancer. 2017;75:109–16.CrossRef Puliti D, Bucchi L, Mancini S, Paci E, Baracco S, Campari C, et al. Advanced breast cancer rates in the epoch of service screening: the 400,000 women cohort study from Italy. Eur J Cancer. 2017;75:109–16.CrossRef
5.
go back to reference Hofvind S, Lee CI, Elmore JG. Stage-specific breast cancer incidence rates among participants and non-participants of a population-based mammographic screening program. Breast Cancer Res Treat. 2012;135:291–9.CrossRef Hofvind S, Lee CI, Elmore JG. Stage-specific breast cancer incidence rates among participants and non-participants of a population-based mammographic screening program. Breast Cancer Res Treat. 2012;135:291–9.CrossRef
6.
go back to reference de Munck L, Fracheboud J, de Bock GH, den Heeten GJ, Siesling S, Broeders MJM. Is the incidence of advanced-stage breast cancer affected by whether women attend a steady-state screening program?: advanced-stage breast cancer after screening. Int J Cancer. 2018;143:842–50.CrossRef de Munck L, Fracheboud J, de Bock GH, den Heeten GJ, Siesling S, Broeders MJM. Is the incidence of advanced-stage breast cancer affected by whether women attend a steady-state screening program?: advanced-stage breast cancer after screening. Int J Cancer. 2018;143:842–50.CrossRef
7.
go back to reference Ciatto S, Bernardi D, Pellegrini M, Borsato G, Peterlongo P, Gentilini MA, et al. Proportional incidence and radiological review of large (T2+) breast cancers as surrogate indicators of screening programme performance. Eur Radiol. 2012;22:1250–4.CrossRef Ciatto S, Bernardi D, Pellegrini M, Borsato G, Peterlongo P, Gentilini MA, et al. Proportional incidence and radiological review of large (T2+) breast cancers as surrogate indicators of screening programme performance. Eur Radiol. 2012;22:1250–4.CrossRef
8.
go back to reference Paci E, Giorgi D, Bianchi S, Vezzosi V, Zappa M, Crocetti E, et al. Assessment of the early impact of the population-based breast cancer screening programme in Florence (Italy) using mortality and surrogate measures. Eur J Cancer. 2002;38:568–73.CrossRef Paci E, Giorgi D, Bianchi S, Vezzosi V, Zappa M, Crocetti E, et al. Assessment of the early impact of the population-based breast cancer screening programme in Florence (Italy) using mortality and surrogate measures. Eur J Cancer. 2002;38:568–73.CrossRef
9.
go back to reference Oberaigner W, Geiger-Gritsch S, Edlinger M, Daniaux M, Knapp R, Hubalek M, et al. Reduction in advanced breast cancer after introduction of a mammography screening program in Tyrol/Austria. Breast. 2017;33:178–82.CrossRef Oberaigner W, Geiger-Gritsch S, Edlinger M, Daniaux M, Knapp R, Hubalek M, et al. Reduction in advanced breast cancer after introduction of a mammography screening program in Tyrol/Austria. Breast. 2017;33:178–82.CrossRef
10.
go back to reference Autier P, Boniol M, Middleton R, Doré J-F, Héry C, Zheng T, et al. Advanced breast cancer incidence following population-based mammographic screening. Ann Oncol. 2011;22:1726–35.CrossRef Autier P, Boniol M, Middleton R, Doré J-F, Héry C, Zheng T, et al. Advanced breast cancer incidence following population-based mammographic screening. Ann Oncol. 2011;22:1726–35.CrossRef
11.
go back to reference Simbrich A, Wellmann I, Heidrich J, Heidinger O, Hense H-W. Trends in advanced breast cancer incidence rates after implementation of a mammography screening program in a German population. Cancer Epidemiol. 2016;44:44–51.CrossRef Simbrich A, Wellmann I, Heidrich J, Heidinger O, Hense H-W. Trends in advanced breast cancer incidence rates after implementation of a mammography screening program in a German population. Cancer Epidemiol. 2016;44:44–51.CrossRef
12.
go back to reference Autier P, Boniol M, Koechlin A, Pizot C, Boniol M. Effectiveness of and overdiagnosis from mammography screening in the Netherlands: population based study. BMJ. 2017;359:j5224.CrossRef Autier P, Boniol M, Koechlin A, Pizot C, Boniol M. Effectiveness of and overdiagnosis from mammography screening in the Netherlands: population based study. BMJ. 2017;359:j5224.CrossRef
13.
go back to reference Helvie MA, Chang JT, Hendrick RE, Banerjee M. Reduction in late-stage breast cancer incidence in the mammography era: implications for overdiagnosis of invasive cancer: reduction in late-stage breast Cancer. Cancer. 2014;120:2649–56.CrossRef Helvie MA, Chang JT, Hendrick RE, Banerjee M. Reduction in late-stage breast cancer incidence in the mammography era: implications for overdiagnosis of invasive cancer: reduction in late-stage breast Cancer. Cancer. 2014;120:2649–56.CrossRef
15.
go back to reference Malek D, Kääb-Sanyal V. Implementation of the German mammography screening program (German MSP) and first results for initial examinations, 2005-2009. Breast Care. 2016;11:183–7.CrossRef Malek D, Kääb-Sanyal V. Implementation of the German mammography screening program (German MSP) and first results for initial examinations, 2005-2009. Breast Care. 2016;11:183–7.CrossRef
16.
go back to reference Urbschat I, Heidinger O. Determination of interval cancer rates in the German mammography screening program using population-based cancer registry data. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014;57:68–76.CrossRef Urbschat I, Heidinger O. Determination of interval cancer rates in the German mammography screening program using population-based cancer registry data. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014;57:68–76.CrossRef
18.
go back to reference Heidinger O, Batzler WU, Krieg V, Weigel S, Biesheuvel C, Heindel W, et al. The incidence of interval cancers in the German mammography screening program: results from the population-based cancer registry in North Rhine-Westphalia. Dtsch Ärztebl Int. 2012;109:781–7.PubMedPubMedCentral Heidinger O, Batzler WU, Krieg V, Weigel S, Biesheuvel C, Heindel W, et al. The incidence of interval cancers in the German mammography screening program: results from the population-based cancer registry in North Rhine-Westphalia. Dtsch Ärztebl Int. 2012;109:781–7.PubMedPubMedCentral
20.
go back to reference Krieg V, Hense H-W, Lehnert M, Mattauch V. Record Linkage mit kryptografierten Identitätsdaten in einem bevölkerungsbezogenen Krebsregister - Entwicklung, Umsetzung und Fehlerraten. Gesundheitswesen. 2001;63:376–82.CrossRef Krieg V, Hense H-W, Lehnert M, Mattauch V. Record Linkage mit kryptografierten Identitätsdaten in einem bevölkerungsbezogenen Krebsregister - Entwicklung, Umsetzung und Fehlerraten. Gesundheitswesen. 2001;63:376–82.CrossRef
22.
go back to reference Day NE, Williams DR, Khaw KT. Breast cancer screening programmes: the development of a monitoring and evaluation system. Br J Cancer. 1989;59:954–8.CrossRef Day NE, Williams DR, Khaw KT. Breast cancer screening programmes: the development of a monitoring and evaluation system. Br J Cancer. 1989;59:954–8.CrossRef
23.
go back to reference Wittekind C, Union for International Cancer Control. editorsTNM - Klassifikation maligner Tumoren. Achte Auflage ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017. Wittekind C, Union for International Cancer Control. editorsTNM - Klassifikation maligner Tumoren. Achte Auflage ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2017.
25.
go back to reference van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16:219–42.CrossRef van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat Methods Med Res. 2007;16:219–42.CrossRef
26.
go back to reference Edge SB, American Joint Committee on Cancer. editorsAJCC cancer staging manual. 7th ed. New York: Springer; 2010. Edge SB, American Joint Committee on Cancer. editorsAJCC cancer staging manual. 7th ed. New York: Springer; 2010.
27.
go back to reference Egger M, Zwahlen M, Cerny T. Tumorscreening – Grundlagen, Evaluation und Implementation. Ther Umsch. 2013;70:195–203.CrossRef Egger M, Zwahlen M, Cerny T. Tumorscreening – Grundlagen, Evaluation und Implementation. Ther Umsch. 2013;70:195–203.CrossRef
Metadata
Title
Incidence of advanced-stage breast cancer in regular participants of a mammography screening program: a prospective register-based study
Authors
Laura Khil
Jan Heidrich
Ina Wellmann
Vanessa Kääb-Sanyal
Stefanie Weigel
Walter Heindel
Hans-Werner Hense
Oliver Heidinger
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-6646-5

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine