Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Research article

Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence

Authors: Jared M. Campbell, Abbas Habibalahi, Saabah Mahbub, Martin Gosnell, Ayad G. Anwer, Sharon Paton, Stan Gronthos, Ewa Goldys

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Cell cycle analysis is important for cancer research. However, available methodologies have drawbacks including limited categorisation and reliance on fixation, staining or transformation. Multispectral analysis of endogenous cell autofluorescence has been shown to be sensitive to changes in cell status and could be applied to the discrimination of cell cycle without these steps.

Methods

Cells from the MIA-PaCa-2, PANC-1, and HeLa cell lines were plated on gridded dishes and imaged using a multispectral fluorescence microscope. They were then stained for proliferating cell nuclear antigen (PCNA) and DNA intensity as a reference standard for their cell cycle position (G1, S, G2, M). The multispectral data was split into training and testing datasets and models were generated to discriminate between G1, S, and G2 + M phase cells. A standard decision tree classification approach was taken, and a two-step system was generated for each line.

Results

Across cancer cell lines accuracy ranged from 68.3% (MIA-PaCa-2) to 73.3% (HeLa) for distinguishing G1 from S and G2 + M, and 69.0% (MIA-PaCa-2) to 78.0% (PANC1) for distinguishing S from G2 + M. Unmixing the multispectral data showed that the autofluorophores NADH, FAD, and PPIX had significant differences between phases. Similarly, the redox ratio and the ratio of protein bound to free NADH were significantly affected.

Conclusions

These results demonstrate that multispectral microscopy could be used for the non-destructive, label free discrimination of cell cycle phase in cancer cells. They provide novel information on the mechanisms of cell-cycle progression and control, and have practical implications for oncology research.
Appendix
Available only for authorised users
Literature
1.
go back to reference Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013;23(7):345–56.PubMedCrossRef Harashima H, Dissmeyer N, Schnittger A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013;23(7):345–56.PubMedCrossRef
2.
go back to reference Tsurusawa M, Niwa M, Katano N, Fujimoto T. Methotrexate cytotoxicity as related to irreversible S phase arrest in mouse L1210 leukemia cells. Jpn J Cancer Res. 1990;81(1):85–90.PubMedPubMedCentralCrossRef Tsurusawa M, Niwa M, Katano N, Fujimoto T. Methotrexate cytotoxicity as related to irreversible S phase arrest in mouse L1210 leukemia cells. Jpn J Cancer Res. 1990;81(1):85–90.PubMedPubMedCentralCrossRef
3.
go back to reference Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928–42.PubMedCrossRef Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928–42.PubMedCrossRef
4.
go back to reference Ferro A, Mestre T, Carneiro P, Sahumbaiev I, Seruca R, Sanches JM. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images. Lab Investig. 2017;97(5):615–25.PubMedCrossRef Ferro A, Mestre T, Carneiro P, Sahumbaiev I, Seruca R, Sanches JM. Blue intensity matters for cell cycle profiling in fluorescence DAPI-stained images. Lab Investig. 2017;97(5):615–25.PubMedCrossRef
6.
go back to reference Schonenberger F, Deutzmann A, Ferrando-May E, Merhof D. Discrimination of cell cycle phases in PCNA-immunolabeled cells. BMC Bioinformatics. 2015;16:180.PubMedPubMedCentralCrossRef Schonenberger F, Deutzmann A, Ferrando-May E, Merhof D. Discrimination of cell cycle phases in PCNA-immunolabeled cells. BMC Bioinformatics. 2015;16:180.PubMedPubMedCentralCrossRef
7.
go back to reference Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):532–9.PubMedCrossRef Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis. Bone. 2001;29(6):532–9.PubMedCrossRef
8.
go back to reference Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132(3):487–98.PubMedCrossRef Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132(3):487–98.PubMedCrossRef
9.
go back to reference Gosnell ME, Anwer AG, Cassano JC, Sue CM, Goldys EM. Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory neurosphere cells, disease-specific models of neurodegenerative disorders. Biochim Biophys Acta. 2016;1863(1):56–63.PubMedCrossRef Gosnell ME, Anwer AG, Cassano JC, Sue CM, Goldys EM. Functional hyperspectral imaging captures subtle details of cell metabolism in olfactory neurosphere cells, disease-specific models of neurodegenerative disorders. Biochim Biophys Acta. 2016;1863(1):56–63.PubMedCrossRef
10.
go back to reference Gosnell ME, Anwer AG, Mahbub SB, Menon Perinchery S, Inglis DW, Adhikary PP, et al. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features. Sci Rep. 2016;6:23453.PubMedPubMedCentralCrossRef Gosnell ME, Anwer AG, Mahbub SB, Menon Perinchery S, Inglis DW, Adhikary PP, et al. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features. Sci Rep. 2016;6:23453.PubMedPubMedCentralCrossRef
11.
go back to reference Datta R, Zhaoqi L, Allison L, Vander Heiden M, Skala MC. Cell division is coupled to the optical redox ratio (conference presentation). San Francisco: SPIE BiOS; 2018.CrossRef Datta R, Zhaoqi L, Allison L, Vander Heiden M, Skala MC. Cell division is coupled to the optical redox ratio (conference presentation). San Francisco: SPIE BiOS; 2018.CrossRef
12.
go back to reference Bartolome F, Abramov AY. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol Biol. 2015;1264:263–70.PubMedCrossRef Bartolome F, Abramov AY. Measurement of mitochondrial NADH and FAD autofluorescence in live cells. Methods Mol Biol. 2015;1264:263–70.PubMedCrossRef
14.
go back to reference Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, et al. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res. 2010;70(11):4759–66.PubMedCrossRef Ostrander JH, McMahon CM, Lem S, Millon SR, Brown JQ, Seewaldt VL, et al. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status. Cancer Res. 2010;70(11):4759–66.PubMedCrossRef
15.
go back to reference Heaster TM, Walsh AJ, Zhao Y, Hiebert SW, Skala MC. Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level. J Biophotonics. 2018;11(1):1.CrossRef Heaster TM, Walsh AJ, Zhao Y, Hiebert SW, Skala MC. Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level. J Biophotonics. 2018;11(1):1.CrossRef
16.
go back to reference Alhallak K, Rebello LG, Muldoon TJ, Quinn KP, Rajaram N. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Biomed Opt Express. 2016;7(11):4364–74.PubMedPubMedCentralCrossRef Alhallak K, Rebello LG, Muldoon TJ, Quinn KP, Rajaram N. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Biomed Opt Express. 2016;7(11):4364–74.PubMedPubMedCentralCrossRef
17.
go back to reference Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep. 2013;3:3432.PubMedPubMedCentralCrossRef Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I. Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep. 2013;3:3432.PubMedPubMedCentralCrossRef
18.
go back to reference Sutton-McDowall ML, Gosnell M, Anwer AG, White M, Purdey M, Abell AD, et al. Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum Reprod. 2017;32(10):2016–25.PubMedCrossRef Sutton-McDowall ML, Gosnell M, Anwer AG, White M, Purdey M, Abell AD, et al. Hyperspectral microscopy can detect metabolic heterogeneity within bovine post-compaction embryos incubated under two oxygen concentrations (7% versus 20%). Hum Reprod. 2017;32(10):2016–25.PubMedCrossRef
19.
go back to reference Mahbub SB, Gosnell ME, Anwer AG, Goldys EM, editors. Label-free unsupervised hyperspectral analysis for regenerative treatments on various cartilage layers (Conference Presentation). Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVI; 2018: International Society for Optics and Photonics. Mahbub SB, Gosnell ME, Anwer AG, Goldys EM, editors. Label-free unsupervised hyperspectral analysis for regenerative treatments on various cartilage layers (Conference Presentation). Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XVI; 2018: International Society for Optics and Photonics.
20.
go back to reference Staikopoulos V, Gosnell ME, Anwer AG, Mustafa S, Hutchinson MR, Goldys EM, editors. Hyperspectral imaging of endogenous fluorescent metabolic molecules to identify pain states in central nervous system tissue. Australasia: SPIE BioPhotonics; 2016. International Society for Optics and Photonics Staikopoulos V, Gosnell ME, Anwer AG, Mustafa S, Hutchinson MR, Goldys EM, editors. Hyperspectral imaging of endogenous fluorescent metabolic molecules to identify pain states in central nervous system tissue. Australasia: SPIE BioPhotonics; 2016. International Society for Optics and Photonics
21.
go back to reference Habibalahi A, Bala C, Allende A, Anwer AG, Goldys EMJTOS. Novel automated non invasive detection of ocular surface squamous neoplasia using multispectral autofluorescence imaging. 2019.CrossRef Habibalahi A, Bala C, Allende A, Anwer AG, Goldys EMJTOS. Novel automated non invasive detection of ocular surface squamous neoplasia using multispectral autofluorescence imaging. 2019.CrossRef
23.
go back to reference Mahbub SB, Plöschner M, Gosnell ME, Anwer AG, Goldys EM. Statistically strong label-free quantitative identification of native fluorophores in a biological sample. Sci Rep. 2017;7(1):2045–322 15792%@.CrossRef Mahbub SB, Plöschner M, Gosnell ME, Anwer AG, Goldys EM. Statistically strong label-free quantitative identification of native fluorophores in a biological sample. Sci Rep. 2017;7(1):2045–322 15792%@.CrossRef
24.
go back to reference Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics. Trends Biotechnol. 2010;28(6):0167–7799 281–90%@.CrossRef Wang D, Bodovitz S. Single cell analysis: the new frontier in ‘omics. Trends Biotechnol. 2010;28(6):0167–7799 281–90%@.CrossRef
25.
go back to reference El Aziz MA, Selim IM, Xiong S. Automatic detection of galaxy type from datasets of galaxies image based on image retrieval approach. Sci Rep. 2017;7(1):2045–322 4463%@.CrossRef El Aziz MA, Selim IM, Xiong S. Automatic detection of galaxy type from datasets of galaxies image based on image retrieval approach. Sci Rep. 2017;7(1):2045–322 4463%@.CrossRef
26.
go back to reference Zhu H, Chu B, Zhang C, Liu F, Jiang L, He Y. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Sci Rep. 2017;7(1):2045–322 4125%@.CrossRef Zhu H, Chu B, Zhang C, Liu F, Jiang L, He Y. Hyperspectral imaging for presymptomatic detection of tobacco disease with successive projections algorithm and machine-learning classifiers. Sci Rep. 2017;7(1):2045–322 4125%@.CrossRef
27.
go back to reference Gosnel M. Unlocking the potential of spectral imaging for the characterization of cells and stem cells population. Thesis, Macquarei University. 2013. Gosnel M. Unlocking the potential of spectral imaging for the characterization of cells and stem cells population. Thesis, Macquarei University. 2013.
28.
go back to reference Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):1471–2156 94%@.CrossRef Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 2010;11(1):1471–2156 94%@.CrossRef
29.
go back to reference Naganathan GK, Grimes LM, Subbiah J, Calkins CR, Samal A, Meyer GE. Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput Electron Agric. 2008;64(2):0168–1699 225–33%@.CrossRef Naganathan GK, Grimes LM, Subbiah J, Calkins CR, Samal A, Meyer GE. Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Comput Electron Agric. 2008;64(2):0168–1699 225–33%@.CrossRef
30.
go back to reference Vapnik V. The nature of statistical learning theory: springer science & business media; 2013. Vapnik V. The nature of statistical learning theory: springer science & business media; 2013.
31.
go back to reference Habibalahi A, Allende A, Bala C, Anwer AG, Mukhopadhyay S, Goldys EMJIA. Optimized Autofluorescence Spectral Signature for Non-Invasive Diagnostics of Ocular Surface Squamous Neoplasia (OSSN). EEE Access. 2019;7:141343–51. Habibalahi A, Allende A, Bala C, Anwer AG, Mukhopadhyay S, Goldys EMJIA. Optimized Autofluorescence Spectral Signature for Non-Invasive Diagnostics of Ocular Surface Squamous Neoplasia (OSSN). EEE Access. 2019;7:141343–51.
32.
go back to reference Gosnell ME, Polikarpov DM, Goldys EM, Zvyagin AV, Gillatt DA, editors. Computer-assisted cystoscopy diagnosis of bladder cancer. 2018: Elsevier. Gosnell ME, Polikarpov DM, Goldys EM, Zvyagin AV, Gillatt DA, editors. Computer-assisted cystoscopy diagnosis of bladder cancer. 2018: Elsevier.
33.
go back to reference Refaeilzadeh P, Tang L, Liu H. Cross-validation. Encyclopedia of database systems: Springer; 2009. p. 532–8. Refaeilzadeh P, Tang L, Liu H. Cross-validation. Encyclopedia of database systems: Springer; 2009. p. 532–8.
34.
go back to reference Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn. 2001;45(2):0885–6125 171–86%@.CrossRef Hand DJ, Till RJ. A simple generalisation of the area under the ROC curve for multiple class classification problems. Mach Learn. 2001;45(2):0885–6125 171–86%@.CrossRef
35.
go back to reference Keshava N, Mustard JF. Spectral unmixing. Signal Process Mag IEEE. 2002;19(1):44–57.CrossRef Keshava N, Mustard JF. Spectral unmixing. Signal Process Mag IEEE. 2002;19(1):44–57.CrossRef
36.
go back to reference Keshava N, Kerekes JP, Manolakis DG, Shaw GA, editors. Algorithm taxonomy for hyperspectral unmixing. 2000. Keshava N, Kerekes JP, Manolakis DG, Shaw GA, editors. Algorithm taxonomy for hyperspectral unmixing. 2000.
37.
go back to reference Keshava N. A survey of spectral unmixing algorithms. Lincoln Lab J. 2003;14(1):55–78. Keshava N. A survey of spectral unmixing algorithms. Lincoln Lab J. 2003;14(1):55–78.
38.
go back to reference Loh WY. Classification and regression trees. Wiley Interdiscip Rev. 2011;1(1):1942–4795 14–23%@. Loh WY. Classification and regression trees. Wiley Interdiscip Rev. 2011;1(1):1942–4795 14–23%@.
39.
go back to reference Dicker DT, Lerner JM, El-Deiry WS. Hyperspectral image analysis of live cells in various cell cycle stages. Cell Cycle. 2007;6(20):2563–70.PubMedCrossRef Dicker DT, Lerner JM, El-Deiry WS. Hyperspectral image analysis of live cells in various cell cycle stages. Cell Cycle. 2007;6(20):2563–70.PubMedCrossRef
40.
go back to reference Hsu JF, Hsieh PY, Hsu HY, Shigeto S. When cells divide: label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Sci Rep. 2015;5:17541.PubMedPubMedCentralCrossRef Hsu JF, Hsieh PY, Hsu HY, Shigeto S. When cells divide: label-free multimodal spectral imaging for exploratory molecular investigation of living cells during cytokinesis. Sci Rep. 2015;5:17541.PubMedPubMedCentralCrossRef
41.
42.
go back to reference Bahler J. Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet. 2005;39:69–94.PubMedCrossRef Bahler J. Cell-cycle control of gene expression in budding and fission yeast. Annu Rev Genet. 2005;39:69–94.PubMedCrossRef
43.
go back to reference Fukuoka M, Uehara A, Niki K, Goto S, Kato D, Utsugi T, et al. Identification of preferentially reactivated genes during early G1 phase using nascent mRNA as an index of transcriptional activity. Biochem Biophys Res Commun. 2013;430(3):1005–10.PubMedCrossRef Fukuoka M, Uehara A, Niki K, Goto S, Kato D, Utsugi T, et al. Identification of preferentially reactivated genes during early G1 phase using nascent mRNA as an index of transcriptional activity. Biochem Biophys Res Commun. 2013;430(3):1005–10.PubMedCrossRef
45.
go back to reference Platz A, Sevigny P, Norberg T, Ring P, Lagerlof B, Ringborg U. Genes involved in cell cycle G1 checkpoint control are frequently mutated in human melanoma metastases. Br J Cancer. 1996;74(6):936–41.PubMedPubMedCentralCrossRef Platz A, Sevigny P, Norberg T, Ring P, Lagerlof B, Ringborg U. Genes involved in cell cycle G1 checkpoint control are frequently mutated in human melanoma metastases. Br J Cancer. 1996;74(6):936–41.PubMedPubMedCentralCrossRef
46.
go back to reference Soto JL, Cabrera CM, Serrano S, Lopez-Nevot MA. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer. 2005;5:36.PubMedPubMedCentralCrossRef Soto JL, Cabrera CM, Serrano S, Lopez-Nevot MA. Mutation analysis of genes that control the G1/S cell cycle in melanoma: TP53, CDKN1A, CDKN2A, and CDKN2B. BMC Cancer. 2005;5:36.PubMedPubMedCentralCrossRef
47.
go back to reference Kaplon J, van Dam L, Peeper D. Two-way communication between the metabolic and cell cycle machineries: the molecular basis. Cell Cycle. 2015;14(13):2022–32.PubMedPubMedCentralCrossRef Kaplon J, van Dam L, Peeper D. Two-way communication between the metabolic and cell cycle machineries: the molecular basis. Cell Cycle. 2015;14(13):2022–32.PubMedPubMedCentralCrossRef
48.
go back to reference Wyld L, Smith O, Lawry J, Reed MW, Brown NJ. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro. Br J Cancer. 1998;78(1):50–5.PubMedPubMedCentralCrossRef Wyld L, Smith O, Lawry J, Reed MW, Brown NJ. Cell cycle phase influences tumour cell sensitivity to aminolaevulinic acid-induced photodynamic therapy in vitro. Br J Cancer. 1998;78(1):50–5.PubMedPubMedCentralCrossRef
50.
go back to reference Isaka T, Nestor AL, Takada T, Allison DC. Chromosomal variations within aneuploid cancer lines. J Histochem Cytochem. 2003;51(10):1343–53.PubMedCrossRef Isaka T, Nestor AL, Takada T, Allison DC. Chromosomal variations within aneuploid cancer lines. J Histochem Cytochem. 2003;51(10):1343–53.PubMedCrossRef
51.
go back to reference Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, et al. High variability of genomic instability and gene expression profiling in different HeLa clones. Sci Rep. 2015;5:15377.PubMedPubMedCentralCrossRef Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, et al. High variability of genomic instability and gene expression profiling in different HeLa clones. Sci Rep. 2015;5:15377.PubMedPubMedCentralCrossRef
Metadata
Title
Non-destructive, label free identification of cell cycle phase in cancer cells by multispectral microscopy of autofluorescence
Authors
Jared M. Campbell
Abbas Habibalahi
Saabah Mahbub
Martin Gosnell
Ayad G. Anwer
Sharon Paton
Stan Gronthos
Ewa Goldys
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-6463-x

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine