Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Metastasis | Research article

NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway

Authors: Xiao-lei Gao, Min Zheng, Hao-fan Wang, Lu-ling Dai, Xiang-hua Yu, Xiao Yang, Xin Pang, Li Li, Mei Zhang, Sha-sha Wang, Jing-biao Wu, Ya-Jie Tang, Xin-hua Liang, Ya-ling Tang

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Salivary adenoid cystic carcinoma (SACC) can recur after removal of the primary tumor and treatment, where they can keep no clinical symptoms and dormant state for 10–15 years. NR2F1 has been demonstrated to regulate the tumor cell dormancy in various malignant tumors and has a potential impact on recurrence and metastasis of carcinoma. However, the role and significance of NR2F1 in SACC dormancy still remain unknown.

Methods

A total number of 59 patients with a diagnosis of SACC were included to detected expression of NR2F1, Ki-67 by immunohistochemical (IHC) staining and terminal deoxynucleotidyl transferase-mediated dUTP nick and labeling (TUNEL). Fisher’s exact test was used to examine the NR2F1 expression and clinicopathologic parameters of SACC. In vitro, SACC cell lines were transfected NR2F1 and knockdown NR2F1 respectively. CCK-8, flow cytometry, wound healing assay and transwell invasion determined SACC cell proliferation, apoptosis, cell cycle, migration and invasion respectively. Chromatin immunoprecipitation (ChIP) assays were utilized to demonstrate the potential role of NR2F1 in SACC invasion via CXCL12/CXCR4 axis. In vivo, xenografts of nude mice via subcutaneous injection or tail vein injection were used to testify the results in vitro.

Results

Among the 59 patients with SACC, 23.73% (14/59) were positive to NR2F1 expression, a lower rate of expression compared with 60% (6/10) in normal salivary gland samples. NR2F1 was correlated with metastasis, relapse and dormancy of SACC. SACC cells with transfected NR2F1 remained dormant, as well as enhanced invasion and metastasis. Knockdown of NR2F1 via siRNA after NR2F1 overexpression restored the proliferation and the cell number in G2/M phases, and reduced the abilities of migration and invasion. In addition, NR2F1 promoted the expression of CXCL12 and CXCR4, and overexpression of CXCL12 at least partly rescued the proliferation, migration, and invasion activities induced by NR2F1 silencing.

Conclusions

NR2F1 may be an underlying mechanism of SACC recurrence and metastasis via regulating tumor cell dormancy through CXCL12/CXCR4 pathway.
Literature
1.
go back to reference Ord RA, Ghazali N. Margin analysis: malignant salivary gland neoplasms of the head and neck. Oral Maxillofac Surg Clin North Am. 2017;29(3):315–24.CrossRef Ord RA, Ghazali N. Margin analysis: malignant salivary gland neoplasms of the head and neck. Oral Maxillofac Surg Clin North Am. 2017;29(3):315–24.CrossRef
2.
go back to reference Alfieri S, Granata R, Bergamini C, Resteghini C, Bossi P, Licitra LF, et al. Systemic therapy in metastatic salivary gland carcinomas: a pathology-driven paradigm? Oral Oncol. 2017;66:58–63.CrossRef Alfieri S, Granata R, Bergamini C, Resteghini C, Bossi P, Licitra LF, et al. Systemic therapy in metastatic salivary gland carcinomas: a pathology-driven paradigm? Oral Oncol. 2017;66:58–63.CrossRef
3.
go back to reference Hsieh CE, Lin CY, Lee LY, Yang LY, Wang CC, Wang HM, et al. Adding concurrent chemotherapy to postoperative radiotherapy improves locoregional control but not overall survival in patients with salivary gland adenoid cystic carcinoma-a propensity score matched study. Radiat Oncol. 2016;11:47.CrossRef Hsieh CE, Lin CY, Lee LY, Yang LY, Wang CC, Wang HM, et al. Adding concurrent chemotherapy to postoperative radiotherapy improves locoregional control but not overall survival in patients with salivary gland adenoid cystic carcinoma-a propensity score matched study. Radiat Oncol. 2016;11:47.CrossRef
4.
go back to reference Huang MX, Ma D, Sun K, Yu G, Guo C, Gao F. Factors influencing survival rate in adenoid cystic carcinoma of the salivary glands. Int J Oral Maxillofac Surg. 1997;26:435–9.CrossRef Huang MX, Ma D, Sun K, Yu G, Guo C, Gao F. Factors influencing survival rate in adenoid cystic carcinoma of the salivary glands. Int J Oral Maxillofac Surg. 1997;26:435–9.CrossRef
5.
go back to reference Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155:750–64.CrossRef Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell. 2013;155:750–64.CrossRef
6.
go back to reference Willis RA. The spread of tumours in the human body. London: Butterworths; 1973. p. 339–50. Willis RA. The spread of tumours in the human body. London: Butterworths; 1973. p. 339–50.
7.
go back to reference Tl D, Sunderland H. Mammary carcinogenesis by 3-methylcholanthrene. Hormonal aspects in tumor induction and growth. J Natl Cancer Inst. 1959;23:567–85. Tl D, Sunderland H. Mammary carcinogenesis by 3-methylcholanthrene. Hormonal aspects in tumor induction and growth. J Natl Cancer Inst. 1959;23:567–85.
8.
go back to reference Goss PE, Chambers AF. Does tumour dormancy offer a therapeutic target? Nat Rev Cancer. 2010;10:871–7.CrossRef Goss PE, Chambers AF. Does tumour dormancy offer a therapeutic target? Nat Rev Cancer. 2010;10:871–7.CrossRef
9.
go back to reference Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002;62:2162–8.PubMed Naumov GN, MacDonald IC, Weinmeister PM, Kerkvliet N, Nadkarni KV, Wilson SM, et al. Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. Cancer Res. 2002;62:2162–8.PubMed
10.
go back to reference Gao XL, Zhang M, Tang YL, Liang XH. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther. 2017;10:5219–28.CrossRef Gao XL, Zhang M, Tang YL, Liang XH. Cancer cell dormancy: mechanisms and implications of cancer recurrence and metastasis. Onco Targets Ther. 2017;10:5219–28.CrossRef
11.
go back to reference Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15:807–17.CrossRef Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15:807–17.CrossRef
12.
go back to reference Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18:1651–7.CrossRef Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, et al. Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med. 2012;18:1651–7.CrossRef
13.
go back to reference Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450:903–7.CrossRef Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 2007;450:903–7.CrossRef
14.
go back to reference Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7:834–46.CrossRef Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;7:834–46.CrossRef
15.
go back to reference Sosa MS. Dormancy programs as emerging antimetastasis therapeutic alternatives. Mol Cell Oncol. 2015;3:e1029062.CrossRef Sosa MS. Dormancy programs as emerging antimetastasis therapeutic alternatives. Mol Cell Oncol. 2015;3:e1029062.CrossRef
16.
go back to reference Hensel JA, Flaig TW, Theodorescu D. Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol. 2013;10:41–51.CrossRef Hensel JA, Flaig TW, Theodorescu D. Clinical opportunities and challenges in targeting tumour dormancy. Nat Rev Clin Oncol. 2013;10:41–51.CrossRef
17.
go back to reference Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast Cancer. PLoS One. 2012;7:e35569.CrossRef Kim RS, Avivar-Valderas A, Estrada Y, Bragado P, Sosa MS, Aguirre-Ghiso JA, et al. Dormancy signatures and metastasis in estrogen receptor positive and negative breast Cancer. PLoS One. 2012;7:e35569.CrossRef
18.
go back to reference Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC, et al. Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res. 2009;69:5664–72.CrossRef Adam AP, George A, Schewe D, Bragado P, Iglesias BV, Ranganathan AC, et al. Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res. 2009;69:5664–72.CrossRef
19.
go back to reference Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat Cell Biol. 2013;15:1351–61.CrossRef Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, et al. TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nat Cell Biol. 2013;15:1351–61.CrossRef
20.
go back to reference Litchfield LM, Klinge CM. Multiple roles of COUP-TFII in cancer initiation and progression. J Mol Endocrinol. 2012;49:R135–48.CrossRef Litchfield LM, Klinge CM. Multiple roles of COUP-TFII in cancer initiation and progression. J Mol Endocrinol. 2012;49:R135–48.CrossRef
21.
go back to reference Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun. 2015;6:6170.CrossRef Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat Commun. 2015;6:6170.CrossRef
22.
go back to reference Uchida D, Kuribayashi N, Kinouchi M, Ohe G, Tamatani T, Nagai H, et al. Expression and function of CXCR4 in human salivary gland cancers. Clin Exp Metastasis. 2013;30:133–42.CrossRef Uchida D, Kuribayashi N, Kinouchi M, Ohe G, Tamatani T, Nagai H, et al. Expression and function of CXCR4 in human salivary gland cancers. Clin Exp Metastasis. 2013;30:133–42.CrossRef
23.
go back to reference Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781–90.CrossRef Guan H, Tan J, Zhang F, Gao L, Bai L, Qi D, et al. Myofibroblasts from salivary gland adenoid cystic carcinomas promote cancer invasion by expressing MMP2 and CXCL12. Histopathology. 2015;66:781–90.CrossRef
25.
go back to reference Garattini E, Bolis M, Gianni' M, Paroni G, Fratelli M, Terao M. Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget. 2016;7:42661–82.CrossRef Garattini E, Bolis M, Gianni' M, Paroni G, Fratelli M, Terao M. Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget. 2016;7:42661–82.CrossRef
26.
go back to reference Perets R, Kaplan T, Stein I, Hidas G, Tayeb S, Avraham E, et al. Genome-wide analysis of androgen receptor targets reveals COUP-TF1 as a novel player in human prostate cancer. PLoS One. 2012;7:e46467.CrossRef Perets R, Kaplan T, Stein I, Hidas G, Tayeb S, Avraham E, et al. Genome-wide analysis of androgen receptor targets reveals COUP-TF1 as a novel player in human prostate cancer. PLoS One. 2012;7:e46467.CrossRef
27.
go back to reference Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW. Gene expression profiling reveals stromal genes expressed in common between Barrett's esophagus and adenocarcinoma. Gastroenterology. 2006;131:925–33.CrossRef Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW. Gene expression profiling reveals stromal genes expressed in common between Barrett's esophagus and adenocarcinoma. Gastroenterology. 2006;131:925–33.CrossRef
28.
go back to reference Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci U S A. 2005;102:6092–7.CrossRef Haqq C, Nosrati M, Sudilovsky D, Crothers J, Khodabakhsh D, Pulliam BL, et al. The gene expression signatures of melanoma progression. Proc Natl Acad Sci U S A. 2005;102:6092–7.CrossRef
29.
go back to reference Qin J, Chen X, Xie X, Tsai MJ, Tsai SY. COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis. Proc Natl Acad Sci U S A. 2010;107:687–92. Qin J, Chen X, Xie X, Tsai MJ, Tsai SY. COUP-TFII regulates tumor growth and metastasis by modulating tumor angiogenesis. Proc Natl Acad Sci U S A. 2010;107:687–92.
30.
go back to reference Nagasaki S, Suzuki T, Miki Y, Akahira J, Shibata H, Ishida T, et al. Chicken ovalbumin upstream promoter transcription factor II in human breast carcinoma: possible regulator of lymphangiogenesis via vascular endothelial growth factor-C expression. Cancer Sci. 2009;100:639–45.CrossRef Nagasaki S, Suzuki T, Miki Y, Akahira J, Shibata H, Ishida T, et al. Chicken ovalbumin upstream promoter transcription factor II in human breast carcinoma: possible regulator of lymphangiogenesis via vascular endothelial growth factor-C expression. Cancer Sci. 2009;100:639–45.CrossRef
31.
go back to reference Qin J, Wu SP, Creighton CJ, Dai F, Xie X, Cheng C, et al. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature. 2013;493:236–40.CrossRef Qin J, Wu SP, Creighton CJ, Dai F, Xie X, Cheng C, et al. COUP-TFII inhibits TGF-β-induced growth barrier to promote prostate tumorigenesis. Nature. 2013;493:236–40.CrossRef
32.
go back to reference Huang H, Chen J, Ding CM, Jin X, Jia ZM, Peng J. LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol Med. 2018;22:3238–45.CrossRef Huang H, Chen J, Ding CM, Jin X, Jia ZM, Peng J. LncRNA NR2F1-AS1 regulates hepatocellular carcinoma oxaliplatin resistance by targeting ABCC1 via miR-363. J Cell Mol Med. 2018;22:3238–45.CrossRef
33.
go back to reference Jiang J, Eliaz I, Sliva D. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity. Int J Oncol. 2011;38:1675–82.PubMed Jiang J, Eliaz I, Sliva D. Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid™: mechanism of activity. Int J Oncol. 2011;38:1675–82.PubMed
34.
go back to reference Borgen E, Rypdal MC, Sosa MS, Renolen A, Schlichting E, Lønning PE, et al. NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res. 2018;20:120.CrossRef Borgen E, Rypdal MC, Sosa MS, Renolen A, Schlichting E, Lønning PE, et al. NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Res. 2018;20:120.CrossRef
35.
go back to reference Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol. 2017;19:120–32.CrossRef Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol. 2017;19:120–32.CrossRef
36.
go back to reference Cackowski FC, Eber MR, Rhee J, Decker AM, Yumoto K, Berry JE, et al. Mer tyrosine kinase regulates disseminated prostate Cancer cellular dormancy. J Cell Biochem. 2017;118:891–902.CrossRef Cackowski FC, Eber MR, Rhee J, Decker AM, Yumoto K, Berry JE, et al. Mer tyrosine kinase regulates disseminated prostate Cancer cellular dormancy. J Cell Biochem. 2017;118:891–902.CrossRef
37.
go back to reference Boudot A, Kerdivel G, Lecomte S, Flouriot G, Desille M, Godey F, et al. COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF signaling and stimulates breast cancer cell migration. BMC Cancer. 2014;14:407.CrossRef Boudot A, Kerdivel G, Lecomte S, Flouriot G, Desille M, Godey F, et al. COUP-TFI modifies CXCL12 and CXCR4 expression by activating EGF signaling and stimulates breast cancer cell migration. BMC Cancer. 2014;14:407.CrossRef
38.
go back to reference Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14:611–22.CrossRef Sosa MS, Bragado P, Aguirre-Ghiso JA. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer. 2014;14:611–22.CrossRef
Metadata
Title
NR2F1 contributes to cancer cell dormancy, invasion and metastasis of salivary adenoid cystic carcinoma by activating CXCL12/CXCR4 pathway
Authors
Xiao-lei Gao
Min Zheng
Hao-fan Wang
Lu-ling Dai
Xiang-hua Yu
Xiao Yang
Xin Pang
Li Li
Mei Zhang
Sha-sha Wang
Jing-biao Wu
Ya-Jie Tang
Xin-hua Liang
Ya-ling Tang
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Metastasis
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5925-5

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine