Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | NSCLC | Research article

Raman spectroscopy detects metabolic signatures of radiation response and hypoxic fluctuations in non-small cell lung cancer

Authors: Samantha J. Van Nest, Leah M. Nicholson, Nils Pavey, Mathew N. Hindi, Alexandre G. Brolo, Andrew Jirasek, Julian J. Lum

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Radiation therapy is a standard form of treating non-small cell lung cancer, however, local recurrence is a major issue with this type of treatment. A better understanding of the metabolic response to radiation therapy may provide insight into improved approaches for local tumour control. Cyclic hypoxia is a well-established determinant that influences radiation response, though its impact on other metabolic pathways that control radiosensitivity remains unclear.

Methods

We used an established Raman spectroscopic (RS) technique in combination with immunofluorescence staining to measure radiation-induced metabolic responses in human non-small cell lung cancer (NSCLC) tumour xenografts. Tumours were established in NOD.CB17-Prkdcscid/J mice, and were exposed to radiation doses of 15 Gy or left untreated. Tumours were harvested at 2 h, 1, 3 and 10 days post irradiation.

Results

We report that xenografted NSCLC tumours demonstrate rapid and stable metabolic changes, following exposure to 15 Gy radiation doses, which can be measured by RS and are dictated by the extent of local tissue oxygenation. In particular, fluctuations in tissue glycogen content were observed as early as 2 h and as late as 10 days post irradiation. Metabolically, this signature was correlated to the extent of tumour regression. Immunofluorescence staining for γ–H2AX, pimonidazole and carbonic anhydrase IX (CAIX) correlated with RS-identified metabolic changes in hypoxia and reoxygenation following radiation exposure.

Conclusion

Our results indicate that RS can identify sequential changes in hypoxia and tumour reoxygenation in NSCLC, that play crucial roles in radiosensitivity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dosoretz DE, Katin M, Blitzer PH, Rubenstein JH, Galmarini H, Garton GR, et al. Medically inoperable lung Carcinoma : the role of radiation therapy. Semin Radiat Oncol. 1996;6(2):98–104.CrossRef Dosoretz DE, Katin M, Blitzer PH, Rubenstein JH, Galmarini H, Garton GR, et al. Medically inoperable lung Carcinoma : the role of radiation therapy. Semin Radiat Oncol. 1996;6(2):98–104.CrossRef
2.
go back to reference Falkson CB, Vella ET, Yu E, Mackenzie R, Ellis PM, Ung YC. Guideline for radiotherapy with curative intent in patients with early-stage medically inoperable non-small-cell lung cancer. Curr Oncol. 2017;24(1):44–9.CrossRef Falkson CB, Vella ET, Yu E, Mackenzie R, Ellis PM, Ung YC. Guideline for radiotherapy with curative intent in patients with early-stage medically inoperable non-small-cell lung cancer. Curr Oncol. 2017;24(1):44–9.CrossRef
3.
go back to reference Rodrigues G, Choy H, Bradley J, Rosenzweig KE, Bogart J, Curran WJ, et al. Definitive radiation therapy in locally advanced non-small cell lung cancer: executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based clinical practice guideline. Pract Radiat Oncol. 2015;5(3):141–8.CrossRef Rodrigues G, Choy H, Bradley J, Rosenzweig KE, Bogart J, Curran WJ, et al. Definitive radiation therapy in locally advanced non-small cell lung cancer: executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based clinical practice guideline. Pract Radiat Oncol. 2015;5(3):141–8.CrossRef
4.
go back to reference Buyyounouski MK, Balter P, Lewis B, D’Ambrosio DJ, Dilling TJ, Miller RC, et al. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: report of the ASTRO emerging technology committee. Int J Radiat Oncol Biol Phys. 2010;78(1):3–10.CrossRef Buyyounouski MK, Balter P, Lewis B, D’Ambrosio DJ, Dilling TJ, Miller RC, et al. Stereotactic body radiotherapy for early-stage non-small-cell lung cancer: report of the ASTRO emerging technology committee. Int J Radiat Oncol Biol Phys. 2010;78(1):3–10.CrossRef
5.
go back to reference Gaspar LE. Optimizing chemoradiation therapy approaches to unresectable stage III non-small cell lung cancer. Curr Opin Oncol. 2001;13(2):110–5.CrossRef Gaspar LE. Optimizing chemoradiation therapy approaches to unresectable stage III non-small cell lung cancer. Curr Opin Oncol. 2001;13(2):110–5.CrossRef
6.
go back to reference Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balekian AA, et al. Treatment of stage III non-small cell lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e314S–40S.CrossRef Ramnath N, Dilling TJ, Harris LJ, Kim AW, Michaud GC, Balekian AA, et al. Treatment of stage III non-small cell lung cancer: diagnosis and management of lung cancer: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e314S–40S.CrossRef
7.
go back to reference Sigel K, Lurslurchachai L, Bonomi M, Mhango G, Bergamo C, Kale M, et al. Effectiveness of radiation therapy alone for elderly patients with unresected stage III non-small cell lung cancer. Lung Cancer. 2013;82(2):266–70.CrossRef Sigel K, Lurslurchachai L, Bonomi M, Mhango G, Bergamo C, Kale M, et al. Effectiveness of radiation therapy alone for elderly patients with unresected stage III non-small cell lung cancer. Lung Cancer. 2013;82(2):266–70.CrossRef
8.
go back to reference Grutters JPC, Kessels AGH, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010;95(1):32–40.CrossRef Grutters JPC, Kessels AGH, Pijls-Johannesma M, De Ruysscher D, Joore MA, Lambin P. Comparison of the effectiveness of radiotherapy with photons, protons and carbon-ions for non-small cell lung cancer: a meta-analysis. Radiother Oncol. 2010;95(1):32–40.CrossRef
9.
go back to reference Baker S, Dahele M, Lagerwaard FJ, Senan S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat Oncol. 2016;11(1):115. Baker S, Dahele M, Lagerwaard FJ, Senan S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat Oncol. 2016;11(1):115.
10.
go back to reference McCloskey P, Balduyck B, Van Schil PE, Faivre-Finn C, O’Brien M. Radical treatment of non-small cell lung cancer during the last 5 years. Eur J Cancer. 2013;49(7):1555–64.CrossRef McCloskey P, Balduyck B, Van Schil PE, Faivre-Finn C, O’Brien M. Radical treatment of non-small cell lung cancer during the last 5 years. Eur J Cancer. 2013;49(7):1555–64.CrossRef
11.
go back to reference Karar J, Maity A. Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther. 2009;8(21):1994–2001.CrossRef Karar J, Maity A. Modulating the tumor microenvironment to increase radiation responsiveness. Cancer Biol Ther. 2009;8(21):1994–2001.CrossRef
12.
go back to reference Salem A, Asselin M-C, Reymen B, Jackson A, Lambin P, West CML, et al. Targeting hypoxia to improve non–small cell lung Cancer outcome. J Natl Cancer Inst. 2018;110(1):14–30.CrossRef Salem A, Asselin M-C, Reymen B, Jackson A, Lambin P, West CML, et al. Targeting hypoxia to improve non–small cell lung Cancer outcome. J Natl Cancer Inst. 2018;110(1):14–30.CrossRef
13.
go back to reference Li L, Hu M, Zhu H, Zhao W, Yang G, Yu J. Comparison of18F-fluoroerythronitroimidazole and18F-fluorodeoxyglucose positron emission tomography and prognostic value in locally advanced non-small-cell lung cancer. Clin Lung Cancer. 2010;11(5):335–40.CrossRef Li L, Hu M, Zhu H, Zhao W, Yang G, Yu J. Comparison of18F-fluoroerythronitroimidazole and18F-fluorodeoxyglucose positron emission tomography and prognostic value in locally advanced non-small-cell lung cancer. Clin Lung Cancer. 2010;11(5):335–40.CrossRef
14.
go back to reference Le Q-T. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006;12(5):1507–14.CrossRef Le Q-T. An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res. 2006;12(5):1507–14.CrossRef
15.
go back to reference Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18(4):243–59.CrossRef Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors: role of hypoxia and anemia. Med Oncol. 2001;18(4):243–59.CrossRef
16.
go back to reference Harada H. How can we overcome tumor hypoxia in radiation therapy? J Radiat Res. 2011;52(5):545–56.CrossRef Harada H. How can we overcome tumor hypoxia in radiation therapy? J Radiat Res. 2011;52(5):545–56.CrossRef
17.
go back to reference Horsman MR, Wouters BG, Joiner MC, Overgaard J. In: Joiner M, van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Edward Arnold; 2009. p. 213–4. Horsman MR, Wouters BG, Joiner MC, Overgaard J. In: Joiner M, van der Kogel A, editors. Basic Clinical Radiobiology. 4th ed. London: Edward Arnold; 2009. p. 213–4.
18.
go back to reference Murata R, Shibamoto Y, Sasai K, Oya N, Shibata T, Takagi T, et al. Reoxygenation after single irradiation in rodent tumors of different types and sizes. Int J Radiat Oncol Biol Phys. 1996;34(4):859–65.CrossRef Murata R, Shibamoto Y, Sasai K, Oya N, Shibata T, Takagi T, et al. Reoxygenation after single irradiation in rodent tumors of different types and sizes. Int J Radiat Oncol Biol Phys. 1996;34(4):859–65.CrossRef
19.
go back to reference O’Hara JA, Goda F, Demidenko E, Swartz HM. Effect on regrowth delay in a murine tumor of scheduling split-dose irradiation based on direct pO2 measurements by electron paramagnetic resonance oximetry. Radiat Res. 1998;150(5):549–56.CrossRef O’Hara JA, Goda F, Demidenko E, Swartz HM. Effect on regrowth delay in a murine tumor of scheduling split-dose irradiation based on direct pO2 measurements by electron paramagnetic resonance oximetry. Radiat Res. 1998;150(5):549–56.CrossRef
20.
go back to reference Fuentes L, Lebenkoff S, White K, Gerdts C, Hopkins K, Potter JE, et al. Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response. Cancer Lett. 2016;93(4):292–7. Fuentes L, Lebenkoff S, White K, Gerdts C, Hopkins K, Potter JE, et al. Developing oxygen-enhanced magnetic resonance imaging as a prognostic biomarker of radiation response. Cancer Lett. 2016;93(4):292–7.
21.
go back to reference Rich LJ, Seshadri M. Photoacoustic monitoring of tumor and normal tissue response to radiation. Sci Rep. Nat Publ Group. 2016;6(February):1–10. Rich LJ, Seshadri M. Photoacoustic monitoring of tumor and normal tissue response to radiation. Sci Rep. Nat Publ Group. 2016;6(February):1–10.
22.
go back to reference Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE. Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol. 1998;46(3):229–37.CrossRef Chapman JD, Engelhardt EL, Stobbe CC, Schneider RF, Hanks GE. Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. Radiother Oncol. 1998;46(3):229–37.CrossRef
23.
go back to reference Langenbacher M, Abdel-Jalil RJ, Voelter W, Weinmann M, Huber SM. In vitro hypoxic cytotoxicity and hypoxic radiosensitization. Efficacy of the novel 2-nitroimidazole N,N,N-tris[2-(2-nitro-1H-imidazol-1-yl)ethyl]amine. Strahlenther Onkol. 2013;189(3):246–54.CrossRef Langenbacher M, Abdel-Jalil RJ, Voelter W, Weinmann M, Huber SM. In vitro hypoxic cytotoxicity and hypoxic radiosensitization. Efficacy of the novel 2-nitroimidazole N,N,N-tris[2-(2-nitro-1H-imidazol-1-yl)ethyl]amine. Strahlenther Onkol. 2013;189(3):246–54.CrossRef
24.
go back to reference Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and predicting radiation response. Semin Radiat Oncol. 2015;25(4):260–72.CrossRef Hill RP, Bristow RG, Fyles A, Koritzinsky M, Milosevic M, Wouters BG. Hypoxia and predicting radiation response. Semin Radiat Oncol. 2015;25(4):260–72.CrossRef
25.
go back to reference Colliez F, Gallez B, Jordan BF. Assessing tumor oxygenation for predicting outcome in radiation oncology: a review of studies correlating tumor hypoxic status and outcome in the preclinical and clinical settings. Front Oncol. 2017;7:10.CrossRef Colliez F, Gallez B, Jordan BF. Assessing tumor oxygenation for predicting outcome in radiation oncology: a review of studies correlating tumor hypoxic status and outcome in the preclinical and clinical settings. Front Oncol. 2017;7:10.CrossRef
26.
go back to reference Bourton EC, Plowman PN, Smith D, Arlett CF, Parris CN. Prolonged expression of the gamma-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment. Int J Cancer. 2011;129(12):2928–34.CrossRef Bourton EC, Plowman PN, Smith D, Arlett CF, Parris CN. Prolonged expression of the gamma-H2AX DNA repair biomarker correlates with excess acute and chronic toxicity from radiotherapy treatment. Int J Cancer. 2011;129(12):2928–34.CrossRef
27.
go back to reference Chaudhuri AA, Binkley MS, Osmundson EC, Alizadeh AA, Diehn M. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA. Semin Radiat Oncol. 2015;25(4):305–12.CrossRef Chaudhuri AA, Binkley MS, Osmundson EC, Alizadeh AA, Diehn M. Predicting radiotherapy responses and treatment outcomes through analysis of circulating tumor DNA. Semin Radiat Oncol. 2015;25(4):305–12.CrossRef
28.
go back to reference Kim JC, Ha YJ, Roh SA, Cho DH, Choi EY, Kim TW, et al. Novel single-nucleotide polymorphism markers predictive of pathologic response to preoperative Chemoradiation therapy in rectal Cancer patients. Int J Radiat Oncol Biol Phys. 2013;86(2):350–7.CrossRef Kim JC, Ha YJ, Roh SA, Cho DH, Choi EY, Kim TW, et al. Novel single-nucleotide polymorphism markers predictive of pathologic response to preoperative Chemoradiation therapy in rectal Cancer patients. Int J Radiat Oncol Biol Phys. 2013;86(2):350–7.CrossRef
29.
go back to reference Niu N, Qin Y, Fridley BL, Hou J, Kalari KR, Zhu M, et al. Radiation pharmacogenomics : a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 2010;20:1482–92.CrossRef Niu N, Qin Y, Fridley BL, Hou J, Kalari KR, Zhu M, et al. Radiation pharmacogenomics : a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 2010;20:1482–92.CrossRef
30.
go back to reference Allen CH, Kumar A, Qutob S, Nyiri B, Chauhan V, Murugkar S. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation. Phys Med Biol. 2018;63:025002 1–12.CrossRef Allen CH, Kumar A, Qutob S, Nyiri B, Chauhan V, Murugkar S. Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation Raman micro-spectroscopy analysis of human lens epithelial cells exposed to a low-dose-range of ionizing radiation. Phys Med Biol. 2018;63:025002 1–12.CrossRef
31.
go back to reference Maguire A, Vegacarrascal I, White L, McClean B, Howe O, Lyng FM, et al. Analyses of ionizing radiation effects in vitro in peripheral blood lymphocytes with Raman spectroscopy. Radiat Res. 2015;183:407–16. Maguire A, Vegacarrascal I, White L, McClean B, Howe O, Lyng FM, et al. Analyses of ionizing radiation effects in vitro in peripheral blood lymphocytes with Raman spectroscopy. Radiat Res. 2015;183:407–16.
32.
go back to reference Yasser M, Shaikh R, Chilakapati MK, Teni T. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS One. 2014;9(5):e97777. Yasser M, Shaikh R, Chilakapati MK, Teni T. Raman spectroscopic study of radioresistant oral cancer sublines established by fractionated ionizing radiation. PLoS One. 2014;9(5):e97777.
33.
go back to reference Vidyasagar MS, Maheedhar K, Vadhiraja BM, Fernendes DJ, Kartha VB, Krishna CM. Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: a pilot study. Biopolymers. 2008;89(6):530–7.CrossRef Vidyasagar MS, Maheedhar K, Vadhiraja BM, Fernendes DJ, Kartha VB, Krishna CM. Prediction of radiotherapy response in cervix cancer by Raman spectroscopy: a pilot study. Biopolymers. 2008;89(6):530–7.CrossRef
34.
go back to reference Matthews Q, Jirasek A, Lum JJ, Brolo AG. Radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys Med Biol. 2011;56(21):6839–55.CrossRef Matthews Q, Jirasek A, Lum JJ, Brolo AG. Radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys Med Biol. 2011;56(21):6839–55.CrossRef
35.
go back to reference Harder SJ, Matthews Q, Isabelle M, Brolo AG, Lum JJ, Jirasek A. A Raman spectroscopic study of cell response to clinical doses of ionizing radiation. Appl Spectrosc. 2015;69(2):193–204.CrossRef Harder SJ, Matthews Q, Isabelle M, Brolo AG, Lum JJ, Jirasek A. A Raman spectroscopic study of cell response to clinical doses of ionizing radiation. Appl Spectrosc. 2015;69(2):193–204.CrossRef
36.
go back to reference Harder SJ, Isabelle M, DeVorkin L, Smazynski J, Brolo AG, Lum JJ, et al. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts. Sci Rep. 2016;6:21006.CrossRef Harder SJ, Isabelle M, DeVorkin L, Smazynski J, Brolo AG, Lum JJ, et al. Raman spectroscopy identifies radiation response in human non-small cell lung cancer xenografts. Sci Rep. 2016;6:21006.CrossRef
37.
go back to reference Van Nest SJ, Nicholson LM, DeVorkin L, Brolo AG, Lum JJ, Jirasek A. Raman spectroscopic signatures reveal distinct biochemical and temporal changes in irradiated human breast adenocarcinoma xenografts. Radiat Res. 2018;189:497–504.CrossRef Van Nest SJ, Nicholson LM, DeVorkin L, Brolo AG, Lum JJ, Jirasek A. Raman spectroscopic signatures reveal distinct biochemical and temporal changes in irradiated human breast adenocarcinoma xenografts. Radiat Res. 2018;189:497–504.CrossRef
38.
go back to reference Matthews Q, Isabelle M, Harder SJ, Smazynski J, Beckham W, Brolo AG, et al. Radiation-induced glycogen accumulation detected by single cell Raman spectroscopy is associated with radioresistance that can be reversed by metformin. PLoS One. 2015;10(8):e0135356.CrossRef Matthews Q, Isabelle M, Harder SJ, Smazynski J, Beckham W, Brolo AG, et al. Radiation-induced glycogen accumulation detected by single cell Raman spectroscopy is associated with radioresistance that can be reversed by metformin. PLoS One. 2015;10(8):e0135356.CrossRef
39.
go back to reference Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol. 2011;56(12):R55–83.CrossRef Verhaegen F, Granton P, Tryggestad E. Small animal radiotherapy research platforms. Phys Med Biol. 2011;56(12):R55–83.CrossRef
40.
go back to reference Schlie K, Westerback A, Devorkin L, Hughson R, Brandon JM, Macpherson S, et al. Survival of effector CD8 + T cells during influenza infection is dependent on autophagy. J Immunol. 2015;194:4277–86.CrossRef Schlie K, Westerback A, Devorkin L, Hughson R, Brandon JM, Macpherson S, et al. Survival of effector CD8 + T cells during influenza infection is dependent on autophagy. J Immunol. 2015;194:4277–86.CrossRef
41.
go back to reference Schulze G, Jirasek A, Yu MML, Lim A, Turner RFB, Blades MW. Investigation of selected baseline removal techniques as candidates for automated implementation. Appl Spectrosc. 2005;59(5):545–74.CrossRef Schulze G, Jirasek A, Yu MML, Lim A, Turner RFB, Blades MW. Investigation of selected baseline removal techniques as candidates for automated implementation. Appl Spectrosc. 2005;59(5):545–74.CrossRef
42.
go back to reference Matthews Q, Jirasek A, Lum J, Duan X, Brolo AG. Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture confluency. Appl Spectrosc. 2010;64(8):871–87.CrossRef Matthews Q, Jirasek A, Lum J, Duan X, Brolo AG. Variability in Raman spectra of single human tumor cells cultured in vitro: correlation with cell cycle and culture confluency. Appl Spectrosc. 2010;64(8):871–87.CrossRef
43.
go back to reference Spowart JE, Townsend KN, Huwait H, Eshragh S, West NR, Ries JN, et al. The autophagy protein LC3A correlates with hypoxia and is a prognostic marker of patient survival in clear cell ovarian cancer. J Pathol. 2012;228(4):437–47.CrossRef Spowart JE, Townsend KN, Huwait H, Eshragh S, West NR, Ries JN, et al. The autophagy protein LC3A correlates with hypoxia and is a prognostic marker of patient survival in clear cell ovarian cancer. J Pathol. 2012;228(4):437–47.CrossRef
44.
go back to reference Raleigh JA, Chou SC, Arteel GE, Horsman MR. Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res. 1999;151(5):580–9.CrossRef Raleigh JA, Chou SC, Arteel GE, Horsman MR. Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res. 1999;151(5):580–9.CrossRef
45.
go back to reference Varghese a J, Gulyas S, Mohindra JK. Hypoxia-dependent reduction of 1-(2-nitro-1-imidazolyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo. Cancer Res. 1976;36(10):3761–5.PubMed Varghese a J, Gulyas S, Mohindra JK. Hypoxia-dependent reduction of 1-(2-nitro-1-imidazolyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo. Cancer Res. 1976;36(10):3761–5.PubMed
46.
go back to reference Kaluz S, Kaluzova M, Liao S-Y, Lerman M, Stanbridge EJ. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta. 2009;1795(2):162–72.PubMedPubMedCentral Kaluz S, Kaluzova M, Liao S-Y, Lerman M, Stanbridge EJ. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: a one transcription factor (HIF-1) show? Biochim Biophys Acta. 2009;1795(2):162–72.PubMedPubMedCentral
47.
go back to reference Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276(45):42462–7.CrossRef Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ. ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem. 2001;276(45):42462–7.CrossRef
48.
go back to reference Graves EE, Vilalta M, Cecic IK, Erler JT, Tran PT, Felsher D, et al. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin Cancer Res. 2010;16(19):4843–52.CrossRef Graves EE, Vilalta M, Cecic IK, Erler JT, Tran PT, Felsher D, et al. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin Cancer Res. 2010;16(19):4843–52.CrossRef
49.
go back to reference Endlich B, Radford IR, Forrester HB, Dewey WC. Computerized video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosis-related apoptosis in lymphoid cells. Radiat Res. 2000;153(1):36–48.CrossRef Endlich B, Radford IR, Forrester HB, Dewey WC. Computerized video time-lapse microscopy studies of ionizing radiation-induced rapid-interphase and mitosis-related apoptosis in lymphoid cells. Radiat Res. 2000;153(1):36–48.CrossRef
50.
go back to reference Garcia-barros M, Paris F, Cordon-cardo C, Lyden D, Rafii S, Haimovitz-friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–60.CrossRef Garcia-barros M, Paris F, Cordon-cardo C, Lyden D, Rafii S, Haimovitz-friedman A, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science. 2003;300:1155–60.CrossRef
51.
go back to reference Joiner MC, van der Kogel AJ, Steel G. In: Joiner MC, van der Kogel AJ, editors. Basic clinical radiobiology. 4th ed. London; 2009. p. 4–6. Joiner MC, van der Kogel AJ, Steel G. In: Joiner MC, van der Kogel AJ, editors. Basic clinical radiobiology. 4th ed. London; 2009. p. 4–6.
52.
go back to reference Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med. 2016;94(2):137–54.CrossRef Zois CE, Harris AL. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J Mol Med. 2016;94(2):137–54.CrossRef
53.
go back to reference Ilie M, Hofman V, Zangari J, Brest P, Hofman P. Lung Cancer response of CAIX and CAXII to in vitro re-oxygenation and clinical significance of the combined expression in NSCLC patients. Lung Cancer. 2013;82:16–23.CrossRef Ilie M, Hofman V, Zangari J, Brest P, Hofman P. Lung Cancer response of CAIX and CAXII to in vitro re-oxygenation and clinical significance of the combined expression in NSCLC patients. Lung Cancer. 2013;82:16–23.CrossRef
Metadata
Title
Raman spectroscopy detects metabolic signatures of radiation response and hypoxic fluctuations in non-small cell lung cancer
Authors
Samantha J. Van Nest
Leah M. Nicholson
Nils Pavey
Mathew N. Hindi
Alexandre G. Brolo
Andrew Jirasek
Julian J. Lum
Publication date
01-12-2019
Publisher
BioMed Central
Keywords
NSCLC
NSCLC
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5686-1

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine