Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Cervical Cancer | Research article

CRKL regulates alternative splicing of cancer-related genes in cervical cancer samples and HeLa cell

Authors: Qingling Song, Fengtao Yi, Yuhong Zhang, Daniel K. Jun Li, Yaxun Wei, Han Yu, Yi Zhang

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Aberrant spliced isoforms are specifically associated with cancer progression and metastasis. The cytoplasmic adaptor CRKL (v-crk avian sarcoma virus CT10 oncogene homolog-like) is a CRK like proto-oncogene, which encodes a SH2 and SH3 (src homology) domain-containing adaptor protein. CRKL is tightly linked to leukemia via its binding partners BCR-ABL and TEL-ABL, upregulated in multiple types of human cancers, and induce cancer cell proliferation and invasion. However, it remains unclear whether signaling adaptors such as CRKL could regulate alternative splicing.

Methods

We analyzed the expression level of CRKL in 305 cervical cancer tissue samples available in TCGA database, and then selected two groups of cancer samples with CRKL differentially expressed to analyzed potential CRKL-regulated alternative splicing events (ASEs). CRKL was knocked down by shRNA to further study CRKL-regulated alternative splicing and the activity of SR protein kinases in HeLa cells using RNA-Seq and Western blot techniques. We validated 43 CRKL-regulated ASEs detected by RNA-seq in HeLa cells, using RT-qPCR analysis of HeLa cell samples and using RNA-seq data of the two group of clinical cervical samples.

Results

The expression of CRKL was mostly up-regulated in stage I cervical cancer samples. Knock-down of CRKL led to a reduced cell proliferation. CRKL-regulated alternative splicing of a large number of genes were enriched in cancer-related functional pathways, among which DNA repair and G2/M mitotic cell cycle, GnRH signaling were shared among the top 10 enriched GO terms and KEGG pathways by results from clinical samples and HeLa cell model. We showed that CRKL-regulated ASEs revealed by computational analysis using ABLas software in HeLa cell were highly validated by RT-qPCR, and also validated by cervical cancer clinical samples.

Conclusions

This is the first report of CRKL-regulation of the alternative splicing of a number of genes critical in tumorigenesis and cancer progression, which is consistent with CRKL reported role as a signaling adaptor and a kinase. Our results underline that the signaling adaptor CRKL might integrate the external and intrinsic cellular signals and coordinate the dynamic activation of cellular signaling pathways including alternative splicing regulation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.PubMedCrossRef
2.
go back to reference Sankaranarayanan R, Esmy PO, Rajkumar R, Muwonge R, Swaminathan R, Shanthakumari S, et al. Effect of visual screening on cervical cancer incidence and mortality in Tamil Nadu, India: a cluster-randomised trial. Lancet. 2007;370(9585):398–406.PubMedCrossRef Sankaranarayanan R, Esmy PO, Rajkumar R, Muwonge R, Swaminathan R, Shanthakumari S, et al. Effect of visual screening on cervical cancer incidence and mortality in Tamil Nadu, India: a cluster-randomised trial. Lancet. 2007;370(9585):398–406.PubMedCrossRef
3.
go back to reference Sankaranarayanan R. HPV vaccination: the promise & problems. Indian J Med Res. 2009;130(3):322–6.PubMed Sankaranarayanan R. HPV vaccination: the promise & problems. Indian J Med Res. 2009;130(3):322–6.PubMed
4.
go back to reference Ronco G, Giorgirossi P, Carozzi F, Confortini M, Palma PD, Mistro AD, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 2010;11(3):249–57.PubMedCrossRef Ronco G, Giorgirossi P, Carozzi F, Confortini M, Palma PD, Mistro AD, et al. Efficacy of human papillomavirus testing for the detection of invasive cervical cancers and cervical intraepithelial neoplasia: a randomised controlled trial. Lancet Oncol. 2010;11(3):249–57.PubMedCrossRef
5.
go back to reference Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524–32.PubMedCrossRef Ronco G, Dillner J, Elfström KM, Tunesi S, Snijders PJ, Arbyn M, et al. Efficacy of HPV-based screening for prevention of invasive cervical cancer: follow-up of four European randomised controlled trials. Lancet. 2014;383(9916):524–32.PubMedCrossRef
6.
go back to reference Sankaranarayanan R, D M, Nene BM, D M, RCP F, Shastri SS, et al. HPV screening for cervical Cancer in rural India. N Engl J Med. 2009;361(3):305 author reply 6. Sankaranarayanan R, D M, Nene BM, D M, RCP F, Shastri SS, et al. HPV screening for cervical Cancer in rural India. N Engl J Med. 2009;361(3):305 author reply 6.
7.
go back to reference Angioli R, Plotti F, Luvero D, Aloisi A, Guzzo F, Capriglione S, et al. Feasibility and safety of carboplatin plus paclitaxel as neoadjuvant chemotherapy for locally advanced cervical cancer: a pilot study. Tumor Biol. 2014;35(3):2741–6.CrossRef Angioli R, Plotti F, Luvero D, Aloisi A, Guzzo F, Capriglione S, et al. Feasibility and safety of carboplatin plus paclitaxel as neoadjuvant chemotherapy for locally advanced cervical cancer: a pilot study. Tumor Biol. 2014;35(3):2741–6.CrossRef
8.
go back to reference Organista-Nava J, Gómez-Gómez Y, Gariglio P. Embryonic stem cell-specific signature in cervical cancer. Tumour Biol. 2014;35(3):1727–38.PubMedCrossRef Organista-Nava J, Gómez-Gómez Y, Gariglio P. Embryonic stem cell-specific signature in cervical cancer. Tumour Biol. 2014;35(3):1727–38.PubMedCrossRef
9.
go back to reference Du PL, Wu KS, Fang JY, Zeng Y, Xu ZX, Tang WR, et al. Cervical Cancer mortality trends in China, 1991-2013, and predictions for the future. Asian Pac J Cancer Prev. 2015;16(15):6391.PubMedCrossRef Du PL, Wu KS, Fang JY, Zeng Y, Xu ZX, Tang WR, et al. Cervical Cancer mortality trends in China, 1991-2013, and predictions for the future. Asian Pac J Cancer Prev. 2015;16(15):6391.PubMedCrossRef
10.
go back to reference Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet. 2001;30(1):13–9.CrossRef Modrek B, Lee C. A genomic view of alternative splicing. Nat Genet. 2001;30(1):13–9.CrossRef
11.
go back to reference Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72(1):291–336.PubMedCrossRef Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72(1):291–336.PubMedCrossRef
12.
go back to reference Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol. 2005;6(6):386–98.PubMedCrossRef Matlin AJ, Clark F, Smith CW. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol. 2005;6(6):386–98.PubMedCrossRef
13.
go back to reference Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321(5891):956–60.PubMedCrossRef Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science. 2008;321(5891):956–60.PubMedCrossRef
15.
go back to reference Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.PubMedCrossRef Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.PubMedCrossRef
16.
17.
go back to reference Ghigna C, Valacca C, & Biamonti G. Alternative splicing and tumor progression. Current genomics. 2008;9(8):556–570. Ghigna C, Valacca C, & Biamonti G. Alternative splicing and tumor progression. Current genomics. 2008;9(8):556–570.
18.
go back to reference Venables JP, Klinck R, Koh C, Gervaisbird J, Bramard A, Inkel L, et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol. 2009;16(6):670–6.PubMedCrossRef Venables JP, Klinck R, Koh C, Gervaisbird J, Bramard A, Inkel L, et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol. 2009;16(6):670–6.PubMedCrossRef
20.
21.
go back to reference Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene. 2015;34(1):1–14.PubMedCrossRef Chen J, Weiss WA. Alternative splicing in cancer: implications for biology and therapy. Oncogene. 2015;34(1):1–14.PubMedCrossRef
22.
go back to reference Liu F, Dai M, Xu Q, Zhu X, Zhou Y, Jiang S, et al. SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis. Oncogene. 2018;37(3).PubMedPubMedCentralCrossRef Liu F, Dai M, Xu Q, Zhu X, Zhou Y, Jiang S, et al. SRSF10-mediated IL1RAP alternative splicing regulates cervical cancer oncogenesis via mIL1RAP-NF-κB-CD47 axis. Oncogene. 2018;37(3).PubMedPubMedCentralCrossRef
23.
go back to reference Lynch DH, Yang XD. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin Oncol. 2002;29((1 Suppl 4)):47.PubMedCrossRef Lynch DH, Yang XD. Therapeutic potential of ABX-EGF: a fully human anti-epidermal growth factor receptor monoclonal antibody for cancer treatment. Semin Oncol. 2002;29((1 Suppl 4)):47.PubMedCrossRef
24.
go back to reference Arteaga CL. ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res. 2003;284(1):122–30.PubMedCrossRef Arteaga CL. ErbB-targeted therapeutic approaches in human cancer. Exp Cell Res. 2003;284(1):122–30.PubMedCrossRef
25.
go back to reference Coxon A, Rozenblum E, Park YS, Joshi N, Tsurutani J, Dennis PA, et al. Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res. 2005;65(16):7137–44.PubMedCrossRef Coxon A, Rozenblum E, Park YS, Joshi N, Tsurutani J, Dennis PA, et al. Mect1-Maml2 fusion oncogene linked to the aberrant activation of cyclic AMP/CREB regulated genes. Cancer Res. 2005;65(16):7137–44.PubMedCrossRef
26.
go back to reference Schwarz JK, Payton JE, Rashmi R, Xiang T, Jia Y, Huettner P, et al. Pathway-specific analysis of gene expression data identifies the PI3K/Akt pathway as a novel therapeutic target in cervical Cancer. Clin Cancer Res. 2012;18(5):1464–71.PubMedPubMedCentralCrossRef Schwarz JK, Payton JE, Rashmi R, Xiang T, Jia Y, Huettner P, et al. Pathway-specific analysis of gene expression data identifies the PI3K/Akt pathway as a novel therapeutic target in cervical Cancer. Clin Cancer Res. 2012;18(5):1464–71.PubMedPubMedCentralCrossRef
27.
go back to reference Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643.PubMedCrossRef Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643.PubMedCrossRef
28.
go back to reference Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.PubMedCrossRef Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.PubMedCrossRef
29.
go back to reference Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non–small-cell lung Cancer. J Clin Oncol. 2007;25(5):587–95.PubMedCrossRef Sequist LV, Bell DW, Lynch TJ, Haber DA. Molecular predictors of response to epidermal growth factor receptor antagonists in non–small-cell lung Cancer. J Clin Oncol. 2007;25(5):587–95.PubMedCrossRef
30.
go back to reference Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 1991;252(5006):668–74.PubMedCrossRef Koch CA, Anderson D, Moran MF, Ellis C, Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 1991;252(5006):668–74.PubMedCrossRef
31.
go back to reference Rozakisadcock M, Fernley R, Wade J, Pawson T, Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993;363(6424):83.CrossRef Rozakisadcock M, Fernley R, Wade J, Pawson T, Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature. 1993;363(6424):83.CrossRef
32.
go back to reference Ten HJ, Morris C, Heisterkamp N, Groffen J. Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene. 1993;8(9):2469–74. Ten HJ, Morris C, Heisterkamp N, Groffen J. Isolation and chromosomal localization of CRKL, a human crk-like gene. Oncogene. 1993;8(9):2469–74.
33.
go back to reference Feller SM. Crk family adaptors–signalling complex formation and biological roles. Oncogene. 2001;20(44):6348–71.PubMedCrossRef Feller SM. Crk family adaptors–signalling complex formation and biological roles. Oncogene. 2001;20(44):6348–71.PubMedCrossRef
34.
go back to reference Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123(7):1213.PubMedCrossRef Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell. 2005;123(7):1213.PubMedCrossRef
35.
go back to reference Slagsvold T, Pattni K, Malerød L, Stenmark H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol. 2006;16(6):317–26.PubMedCrossRef Slagsvold T, Pattni K, Malerød L, Stenmark H. Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol. 2006;16(6):317–26.PubMedCrossRef
36.
go back to reference Raiborg C, Wesche J, Malerød L, Stenmark H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J Cell Sci. 2006;119(Pt 12:2414–24.PubMedCrossRef Raiborg C, Wesche J, Malerød L, Stenmark H. Flat clathrin coats on endosomes mediate degradative protein sorting by scaffolding Hrs in dynamic microdomains. J Cell Sci. 2006;119(Pt 12:2414–24.PubMedCrossRef
37.
go back to reference Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell. 2006;125(1):99.PubMedCrossRef Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, et al. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell. 2006;125(1):99.PubMedCrossRef
38.
go back to reference Pawson T. Dynamic control of signaling by modular adaptor proteins. Curr Opin Cell Biol. 2007;19(2):112–6.PubMedCrossRef Pawson T. Dynamic control of signaling by modular adaptor proteins. Curr Opin Cell Biol. 2007;19(2):112–6.PubMedCrossRef
39.
go back to reference Ren R, Ye ZS, Baltimore D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 1994;8(7):783.PubMedCrossRef Ren R, Ye ZS, Baltimore D. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 1994;8(7):783.PubMedCrossRef
40.
go back to reference Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J. 1994;13(16):3748–56.PubMedPubMedCentralCrossRef Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, et al. A novel signaling molecule, p130, forms stable complexes in vivo with v-Crk and v-Src in a tyrosine phosphorylation-dependent manner. EMBO J. 1994;13(16):3748–56.PubMedPubMedCentralCrossRef
41.
go back to reference De JR, Ten HJ, Heisterkamp N, Groffen J. Crkl is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia. J Biol Chem. 1995;270(37):21468–71.CrossRef De JR, Ten HJ, Heisterkamp N, Groffen J. Crkl is complexed with tyrosine-phosphorylated Cbl in Ph-positive leukemia. J Biol Chem. 1995;270(37):21468–71.CrossRef
42.
go back to reference Salgia R, Uemura N, Okuda K, Li JL, Pisick E, Sattler M, et al. CRKL links p210BCR/ABL with paxillin in chronic myelogenous leukemia cells. J Biol Chem. 1995;270(49):29145–50.PubMedCrossRef Salgia R, Uemura N, Okuda K, Li JL, Pisick E, Sattler M, et al. CRKL links p210BCR/ABL with paxillin in chronic myelogenous leukemia cells. J Biol Chem. 1995;270(49):29145–50.PubMedCrossRef
43.
go back to reference Salgia R, Pisick E, Sattler M, Li JL, Uemura N, Wong WK, et al. p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem. 1996;271(41):25198–203.PubMedCrossRef Salgia R, Pisick E, Sattler M, Li JL, Uemura N, Wong WK, et al. p130CAS forms a signaling complex with the adapter protein CRKL in hematopoietic cells transformed by the BCR/ABL oncogene. J Biol Chem. 1996;271(41):25198–203.PubMedCrossRef
44.
go back to reference Ribon V, Hubbell S, Herrera R, Saltiel AR. The product of the cbl oncogene forms stable complexes in vivo with endogenous Crk in a tyrosine phosphorylation-dependent manner. Mol Cell Biol. 1996;16(1):45.PubMedPubMedCentralCrossRef Ribon V, Hubbell S, Herrera R, Saltiel AR. The product of the cbl oncogene forms stable complexes in vivo with endogenous Crk in a tyrosine phosphorylation-dependent manner. Mol Cell Biol. 1996;16(1):45.PubMedPubMedCentralCrossRef
45.
go back to reference Beitner-Johnson D, Blakesley VA, Shen-Orr Z, Jimenez M, Stannard B, Wang LM, et al. The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling. J Biol Chem. 1996;271(16):9287–90.PubMedCrossRef Beitner-Johnson D, Blakesley VA, Shen-Orr Z, Jimenez M, Stannard B, Wang LM, et al. The proto-oncogene product c-Crk associates with insulin receptor substrate-1 and 4PS. Modulation by insulin growth factor-I (IGF) and enhanced IGF-I signaling. J Biol Chem. 1996;271(16):9287–90.PubMedCrossRef
46.
go back to reference Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E, et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway. Oncogene. 1996;12(4):839–46.PubMed Sattler M, Salgia R, Okuda K, Uemura N, Durstin MA, Pisick E, et al. The proto-oncogene product p120CBL and the adaptor proteins CRKL and c-CRK link c-ABL, p190BCR/ABL and p210BCR/ABL to the phosphatidylinositol-3′ kinase pathway. Oncogene. 1996;12(4):839–46.PubMed
47.
go back to reference Sattler M, Salgia R, Shrikhande G, Verma S, Uemura N, Law SF, et al. Differential signaling after beta1 integrin ligation is mediated through binding of CRKL to p120(CBL) and p110(HEF1). J Biol Chem. 1997;272(22):14320–6.PubMedCrossRef Sattler M, Salgia R, Shrikhande G, Verma S, Uemura N, Law SF, et al. Differential signaling after beta1 integrin ligation is mediated through binding of CRKL to p120(CBL) and p110(HEF1). J Biol Chem. 1997;272(22):14320–6.PubMedCrossRef
48.
go back to reference Sattler M, Salgia R, Shrikhande G, Verma S, Pisick E, Prasad KV, et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL). J Biol Chem. 1997;272(15):10248.PubMedCrossRef Sattler M, Salgia R, Shrikhande G, Verma S, Pisick E, Prasad KV, et al. Steel factor induces tyrosine phosphorylation of CRKL and binding of CRKL to a complex containing c-kit, phosphatidylinositol 3-kinase, and p120(CBL). J Biol Chem. 1997;272(15):10248.PubMedCrossRef
49.
go back to reference Gesbert F, Garbay C, Bertoglio J. Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells. J Biol Chem. 1998;273(7):3986–93.PubMedCrossRef Gesbert F, Garbay C, Bertoglio J. Interleukin-2 stimulation induces tyrosine phosphorylation of p120-Cbl and CrkL and formation of multimolecular signaling complexes in T lymphocytes and natural killer cells. J Biol Chem. 1998;273(7):3986–93.PubMedCrossRef
50.
go back to reference Koval AP, Karas M, Zick Y, Leroith D. Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction. J Biol Chem. 1998;273(24):14780.PubMedCrossRef Koval AP, Karas M, Zick Y, Leroith D. Interplay of the proto-oncogene proteins CrkL and CrkII in insulin-like growth factor-I receptor-mediated signal transduction. J Biol Chem. 1998;273(24):14780.PubMedCrossRef
51.
go back to reference Fish EN, Uddin S, Korkmaz M, Majchrzak B, Druker BJ, Platanias LC. Activation of a CrkL-stat5 signaling complex by type I interferons. J Biol Chem. 1999;274(2):571.PubMedCrossRef Fish EN, Uddin S, Korkmaz M, Majchrzak B, Druker BJ, Platanias LC. Activation of a CrkL-stat5 signaling complex by type I interferons. J Biol Chem. 1999;274(2):571.PubMedCrossRef
52.
go back to reference Akagi T, Shishido T, Murata K, Hanafusa H. V-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc Natl Acad Sci U S A. 2000;97(13):7290–5.PubMedPubMedCentralCrossRef Akagi T, Shishido T, Murata K, Hanafusa H. V-Crk activates the phosphoinositide 3-kinase/AKT pathway in transformation. Proc Natl Acad Sci U S A. 2000;97(13):7290–5.PubMedPubMedCentralCrossRef
53.
go back to reference Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal. 2009;7(1):13.PubMedPubMedCentralCrossRef Birge RB, Kalodimos C, Inagaki F, Tanaka S. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal. 2009;7(1):13.PubMedPubMedCentralCrossRef
54.
go back to reference Mayer BJ, Gupta R. Functions of SH2 and SH3 domains. Curr Top Microbiol Immunol. 1998;228(228):1.PubMed Mayer BJ, Gupta R. Functions of SH2 and SH3 domains. Curr Top Microbiol Immunol. 1998;228(228):1.PubMed
55.
go back to reference Larsson H, Klint P, Landgren E, Claesson-Welsh L. Fibroblast growth factor receptor-1-mediated endothelial cell proliferation is dependent on the Src homology (SH) 2/SH3 domain-containing adaptor protein Crk. J Biol Chem. 1999;274(36):25726–34.PubMedCrossRef Larsson H, Klint P, Landgren E, Claesson-Welsh L. Fibroblast growth factor receptor-1-mediated endothelial cell proliferation is dependent on the Src homology (SH) 2/SH3 domain-containing adaptor protein Crk. J Biol Chem. 1999;274(36):25726–34.PubMedCrossRef
56.
go back to reference Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201–7.PubMedCrossRef Cross MJ, Claesson-Welsh L. FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol Sci. 2001;22(4):201–7.PubMedCrossRef
57.
go back to reference Salameh A, Galvagni F, Bardelli M, Bussolino F, Oliviero S. Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood. 2005;106(10):3423.PubMedCrossRef Salameh A, Galvagni F, Bardelli M, Bussolino F, Oliviero S. Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood. 2005;106(10):3423.PubMedCrossRef
58.
go back to reference Moon AM, Guris DL, Seo J, Li L, Hammond J, Talbot A, et al. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell. 2006;10(1):71.PubMedPubMedCentralCrossRef Moon AM, Guris DL, Seo J, Li L, Hammond J, Talbot A, et al. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell. 2006;10(1):71.PubMedPubMedCentralCrossRef
59.
go back to reference Cheung HW, Du J, Boehm JS, He F, Weir BA, Wang X, et al. Amplification of CRKL induces transformation and EGFR inhibitor resistance in human non small cell lung cancers. Cancer Discov. 2011;1(7):608–25.PubMedPubMedCentralCrossRef Cheung HW, Du J, Boehm JS, He F, Weir BA, Wang X, et al. Amplification of CRKL induces transformation and EGFR inhibitor resistance in human non small cell lung cancers. Cancer Discov. 2011;1(7):608–25.PubMedPubMedCentralCrossRef
60.
go back to reference Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem. 1994;269(37):22925–8.PubMed Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ. Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem. 1994;269(37):22925–8.PubMed
61.
go back to reference Senechal K, Halpern J, Sawyers CL. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem. 1996;271(38):23255–61.PubMedCrossRef Senechal K, Halpern J, Sawyers CL. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem. 1996;271(38):23255–61.PubMedCrossRef
62.
go back to reference Posern G. The leukaemic oncoproteins Bcr-Abl and Tel-Abl (ETV6/Abl) have altered substrate preferences and activate similar intracellular signalling pathways. Oncogene. 2000;19(13):1684–90.PubMedCrossRef Posern G. The leukaemic oncoproteins Bcr-Abl and Tel-Abl (ETV6/Abl) have altered substrate preferences and activate similar intracellular signalling pathways. Oncogene. 2000;19(13):1684–90.PubMedCrossRef
63.
go back to reference Rhodes J, York RD, Tara D, Tajinda K, Druker BJ. CrkL functions as a nuclear adaptor and transcriptional activator in Bcr-Abl–expressing cells. Exp Hematol. 2000;28(3):305–10.PubMedCrossRef Rhodes J, York RD, Tara D, Tajinda K, Druker BJ. CrkL functions as a nuclear adaptor and transcriptional activator in Bcr-Abl–expressing cells. Exp Hematol. 2000;28(3):305–10.PubMedCrossRef
64.
go back to reference Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899.PubMedPubMedCentralCrossRef Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463(7283):899.PubMedPubMedCentralCrossRef
65.
go back to reference Kim YH, Kwei KA, Luc G, Keyan S, Jessica K, Manuela PG, et al. Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene. 2010;29(10):1421–30.PubMedCrossRef Kim YH, Kwei KA, Luc G, Keyan S, Jessica K, Manuela PG, et al. Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene. 2010;29(10):1421–30.PubMedCrossRef
66.
go back to reference Wang J, Chen X, Li P, Su L, Yu B, Cai Q, et al. CRKL promotes cell proliferation in gastric cancer and is negatively regulated by miR-126. Chem Biol Interact. 2013;206(2):230–8.PubMedCrossRef Wang J, Chen X, Li P, Su L, Yu B, Cai Q, et al. CRKL promotes cell proliferation in gastric cancer and is negatively regulated by miR-126. Chem Biol Interact. 2013;206(2):230–8.PubMedCrossRef
67.
go back to reference Zhao T, Miao Z, Wang Z, Xu Y, Wu J, Liu X, et al. Overexpression of CRKL correlates with malignant cell proliferation in breast cancer. Tumour Biol. 2013;34(5):2891–7.PubMedCrossRef Zhao T, Miao Z, Wang Z, Xu Y, Wu J, Liu X, et al. Overexpression of CRKL correlates with malignant cell proliferation in breast cancer. Tumour Biol. 2013;34(5):2891–7.PubMedCrossRef
68.
go back to reference Ji H, Li B, Zhang S, He Z, Zhou Y, Ouyang L. Crk-like adapter protein is overexpressed in cervical carcinoma, facilitates proliferation, invasion and chemoresistance, and regulates Src and Akt signaling. Oncol Lett. 2016;12(5):3811–7.PubMedPubMedCentralCrossRef Ji H, Li B, Zhang S, He Z, Zhou Y, Ouyang L. Crk-like adapter protein is overexpressed in cervical carcinoma, facilitates proliferation, invasion and chemoresistance, and regulates Src and Akt signaling. Oncol Lett. 2016;12(5):3811–7.PubMedPubMedCentralCrossRef
69.
go back to reference Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 1996;74(10):589.PubMedCrossRef Whitmarsh AJ, Davis RJ. Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med. 1996;74(10):589.PubMedCrossRef
70.
go back to reference Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, et al. The Clk/sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 1996;15(2):265–75.PubMedPubMedCentralCrossRef Colwill K, Pawson T, Andrews B, Prasad J, Manley JL, Bell JC, et al. The Clk/sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 1996;15(2):265–75.PubMedPubMedCentralCrossRef
71.
go back to reference Duncan PI, Stojdl DF, Marius RM, Bell JC. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol Cell Biol. 1997;17(10):5996–6001.PubMedPubMedCentralCrossRef Duncan PI, Stojdl DF, Marius RM, Bell JC. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol Cell Biol. 1997;17(10):5996–6001.PubMedPubMedCentralCrossRef
72.
go back to reference Patel NA, Kaneko S, Apostolatos HS, Sun SB, Watson JE, Davidowitz K, et al. Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CβII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem. 2005;280(14):14302–9.PubMedCrossRef Patel NA, Kaneko S, Apostolatos HS, Sun SB, Watson JE, Davidowitz K, et al. Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CβII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40. J Biol Chem. 2005;280(14):14302–9.PubMedCrossRef
73.
go back to reference Shi J, Qian W, Yin X, Iqbal K, Grundkeiqbal I, Gu X, et al. Cyclic AMP-dependent protein kinase regulates the alternative splicing of TAU exon 10: A MECHANISM INVOLVED IN TAU PATHOLOGY OF ALZHEIMER DISEASE. J Biol Chem. 2011;286(16):14639–48.PubMedPubMedCentralCrossRef Shi J, Qian W, Yin X, Iqbal K, Grundkeiqbal I, Gu X, et al. Cyclic AMP-dependent protein kinase regulates the alternative splicing of TAU exon 10: A MECHANISM INVOLVED IN TAU PATHOLOGY OF ALZHEIMER DISEASE. J Biol Chem. 2011;286(16):14639–48.PubMedPubMedCentralCrossRef
74.
go back to reference Zhou Z, Qiu J, Liu W, Zhou Y, Plocinik RM, Li H, et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol Cell. 2012;47(3):422–33.PubMedPubMedCentralCrossRef Zhou Z, Qiu J, Liu W, Zhou Y, Plocinik RM, Li H, et al. The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus. Mol Cell. 2012;47(3):422–33.PubMedPubMedCentralCrossRef
75.
go back to reference Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393–406.PubMedCrossRef Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM, Strein C, et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 2012;149(6):1393–406.PubMedCrossRef
76.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.PubMedCrossRef
77.
go back to reference Li RZ, Hou J, Wei Y, Luo X Ye, Y & Zhang Y. hnRNPDL extensively regulates transcription and alternative splicing. Gene. 2019;687:125–134. Li RZ, Hou J, Wei Y, Luo X Ye, Y & Zhang Y. hnRNPDL extensively regulates transcription and alternative splicing. Gene. 2019;687:125–134.
78.
go back to reference Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.PubMedPubMedCentralCrossRef Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14(4):R36.PubMedPubMedCentralCrossRef
79.
go back to reference Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139.PubMedCrossRef Robinson MD, Mccarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139.PubMedCrossRef
80.
go back to reference Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue:316–22.CrossRef Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011;39(Web Server issue:316–22.CrossRef
81.
go back to reference Xia H, Chen D, Wu Q, Wu G, Zhou Y, Zhang Y, & Zhang L. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2017;1860(9):911–21. Xia H, Chen D, Wu Q, Wu G, Zhou Y, Zhang Y, & Zhang L. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms. 2017;1860(9):911–21.
82.
go back to reference Jin L, Li G, Yu D, Wei H, Chao C, Liao S, et al. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae. BMC Genomics. 2017;18(1):130.PubMedPubMedCentralCrossRef Jin L, Li G, Yu D, Wei H, Chao C, Liao S, et al. Transcriptome analysis reveals the complexity of alternative splicing regulation in the fungus Verticillium dahliae. BMC Genomics. 2017;18(1):130.PubMedPubMedCentralCrossRef
83.
go back to reference Pertea G. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef Pertea G. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef
85.
go back to reference Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, & Greenberg ME. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275(5300):661–65. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, & Greenberg ME. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275(5300):661–65.
86.
go back to reference Blaustein M, Pelisch F, Tanos T, Muñoz MJ, Wengier D, Quadrana L, et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol. 2005;12(12):1037–44.PubMedCrossRef Blaustein M, Pelisch F, Tanos T, Muñoz MJ, Wengier D, Quadrana L, et al. Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT. Nat Struct Mol Biol. 2005;12(12):1037–44.PubMedCrossRef
87.
go back to reference Fu L, Dong Q, Xie C, Wang Y, Li Q. CRKL protein overexpression enhances cell proliferation and invasion in pancreatic cancer. Tumor Biol. 2015;36(2):1015–22.CrossRef Fu L, Dong Q, Xie C, Wang Y, Li Q. CRKL protein overexpression enhances cell proliferation and invasion in pancreatic cancer. Tumor Biol. 2015;36(2):1015–22.CrossRef
88.
go back to reference Barber MA, Welch HC. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer. 2006;93(5):E44.PubMed Barber MA, Welch HC. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer. 2006;93(5):E44.PubMed
89.
go back to reference Hwang SL, Chang JH, Cheng TS, Sy WD, Lieu AS, Lin CL, et al. Expression of Rac3 in human brain tumors. J Clin Neurosci. 2005;12(5):571–4.PubMedCrossRef Hwang SL, Chang JH, Cheng TS, Sy WD, Lieu AS, Lin CL, et al. Expression of Rac3 in human brain tumors. J Clin Neurosci. 2005;12(5):571–4.PubMedCrossRef
90.
go back to reference Wang G, Wang H, Zhang C, Liu T, Li Q, Lin X, et al. Rac3 regulates cell proliferation through cell cycle pathway and predicts prognosis in lung adenocarcinoma. Tumor Biol. 2016;37(9):1–11.CrossRef Wang G, Wang H, Zhang C, Liu T, Li Q, Lin X, et al. Rac3 regulates cell proliferation through cell cycle pathway and predicts prognosis in lung adenocarcinoma. Tumor Biol. 2016;37(9):1–11.CrossRef
91.
go back to reference Donnelly SK, Cabrera R, Mao S, Christin JR, Wu B, Guo W, et al. Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol. 2017;216(12):jcb.201704048.CrossRef Donnelly SK, Cabrera R, Mao S, Christin JR, Wu B, Guo W, et al. Rac3 regulates breast cancer invasion and metastasis by controlling adhesion and matrix degradation. J Cell Biol. 2017;216(12):jcb.201704048.CrossRef
92.
go back to reference Xu AL, Yu GQ, Kong XC, Qiu XH, Li PL. Effect of Rac1 downregulation mediated by shRNA on the biological behaviour of human cervical cancer cells. J Int Med Res. 2013;41(4):1037.PubMedCrossRef Xu AL, Yu GQ, Kong XC, Qiu XH, Li PL. Effect of Rac1 downregulation mediated by shRNA on the biological behaviour of human cervical cancer cells. J Int Med Res. 2013;41(4):1037.PubMedCrossRef
93.
go back to reference Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y, et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science. 2000;289(5482):1194–7.PubMedCrossRef Kawasaki Y, Senda T, Ishidate T, Koyama R, Morishita T, Iwayama Y, et al. Asef, a link between the tumor suppressor APC and G-protein signaling. Science. 2000;289(5482):1194–7.PubMedCrossRef
94.
go back to reference Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB, et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell. 2008;135(5):865–78.PubMedPubMedCentralCrossRef Zhan L, Rosenberg A, Bergami KC, Yu M, Xuan Z, Jaffe AB, et al. Deregulation of scribble promotes mammary tumorigenesis and reveals a role for cell polarity in carcinoma. Cell. 2008;135(5):865–78.PubMedPubMedCentralCrossRef
95.
go back to reference Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, et al. Protein tyrosine kinase PYK2 involved in ca (2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995;376(6543):737.PubMedCrossRef Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, et al. Protein tyrosine kinase PYK2 involved in ca (2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995;376(6543):737.PubMedCrossRef
96.
go back to reference Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, et al. Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A. 2011;108(37):15225–30.PubMedPubMedCentralCrossRef Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, Chou CY, et al. Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A. 2011;108(37):15225–30.PubMedPubMedCentralCrossRef
97.
go back to reference M B, S V, N M, R D, H C, E W, et al. Substrate specificity and activity regulation of protein kinase MELK. J Biol Chem. 2005;280(48):40003–11.CrossRef M B, S V, N M, R D, H C, E W, et al. Substrate specificity and activity regulation of protein kinase MELK. J Biol Chem. 2005;280(48):40003–11.CrossRef
98.
go back to reference Lin ML, Park JH, Nishidate T, Nakamura Y, Katagiri T. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family. Breast Cancer Res. 2007;9(1):1–13.CrossRef Lin ML, Park JH, Nishidate T, Nakamura Y, Katagiri T. Involvement of maternal embryonic leucine zipper kinase (MELK) in mammary carcinogenesis through interaction with Bcl-G, a pro-apoptotic member of the Bcl-2 family. Breast Cancer Res. 2007;9(1):1–13.CrossRef
99.
go back to reference Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–6.PubMedPubMedCentralCrossRef Tee AR, Fingar DC, Manning BD, Kwiatkowski DJ, Cantley LC, Blenis J. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–6.PubMedPubMedCentralCrossRef
100.
go back to reference A A, J Z, S B, I L, D O, NM D, et al. Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev. 2004;18(3):249.CrossRef A A, J Z, S B, I L, D O, NM D, et al. Requirement of protein phosphatase 5 in DNA-damage-induced ATM activation. Genes Dev. 2004;18(3):249.CrossRef
101.
go back to reference Kastan MB, Lim D. The many substrates and functions of ATM. Nat Rev Mol Cell Biol. 2000;1(3):179–86.PubMedCrossRef Kastan MB, Lim D. The many substrates and functions of ATM. Nat Rev Mol Cell Biol. 2000;1(3):179–86.PubMedCrossRef
102.
go back to reference Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.CrossRefPubMed Shiloh Y. ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer. 2003;3(3):155–68.CrossRefPubMed
103.
go back to reference Boise LH, Gonzálezgarcía M, Postema CE, Ding L, Lindsten T, Turka LA, et al. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74(4):597–608.PubMedCrossRef Boise LH, Gonzálezgarcía M, Postema CE, Ding L, Lindsten T, Turka LA, et al. Bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74(4):597–608.PubMedCrossRef
Metadata
Title
CRKL regulates alternative splicing of cancer-related genes in cervical cancer samples and HeLa cell
Authors
Qingling Song
Fengtao Yi
Yuhong Zhang
Daniel K. Jun Li
Yaxun Wei
Han Yu
Yi Zhang
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5671-8

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine