Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Metastasis | Research article

RETRACTED ARTICLE: Numb inhibits epithelial-mesenchymal transition via RBP-Jκ-dependent Notch1/PTEN/FAK signaling pathway in tongue cancer

Authors: Jin-Yun Li, Wen-Xiao Huang, Xiao Zhou, Jie Chen, Zan Li

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Oral cancer has been estimated as the sixth most frequent solid cancer all over the world, in which tongue squamous cell carcinoma (TSCC) is the most common type of oral cancers. However, the mechanism of TSCC metastasizing to lymph node and distant sites has not been completely understood.

Methods

In this study, RT-qPCR method was used to detect the mRNA level of Numb, PTEN and Notch1 genes, as well as EMT-associated genes. Western blot assay was utilized to detect protein level of these genes. In addition, we determined cell proliferation by MTT assay and employed transwell invasion assay and wound healing assay to probe the abilities of invasion and migration, respectively. To investigate the role of PTEN, its inhibitor VO-Ohpic trihydrate was used to treat SCC-4 and CAL27 cells.

Results

We found that Numb expression was downregulated in SCC-9 and CAL-27 cells compared to NHOK cells. Instead, Notch1 level in SCC-9 and CAL-27 cells were higher than that in NHOK cells. Furthermore, the results showed that Numb overexpression significantly suppressed proliferation, migration and invasion of SCC-9 and CAL-27 cells via regulating Notch1 signaling and EMT-related genes expression. By contrast, we observed that RBP-Jκ knockdown had an inhibitory role in proliferation, migration and invasion of SCC-9 and CAL-27 cells. In cells with Numb overexpression or RBP-Jκ knockdown, p-FAK and EMT-related genes were remarkably regulated.

Conclusions

Our findings provide new mechanism of understanding the metastasis of TSCC and help develop therapeutic strategies for treating tongue cancer.
Literature
1.
2.
go back to reference Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–16.CrossRefPubMed Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–16.CrossRefPubMed
3.
go back to reference Kawakita A, Yanamoto S, Yamada S, et al. MicroRNA-21 promotes oral cancer invasion via the Wnt/beta-catenin pathway by targeting DKK2. Pathol Oncol Res. 2014;20:253–61.CrossRefPubMed Kawakita A, Yanamoto S, Yamada S, et al. MicroRNA-21 promotes oral cancer invasion via the Wnt/beta-catenin pathway by targeting DKK2. Pathol Oncol Res. 2014;20:253–61.CrossRefPubMed
4.
go back to reference Ho CM, Lam KH, Wei WI, et al. Occult lymph node metastasis in small oral tongue cancers. Head Neck. 1992;14:359–63.CrossRefPubMed Ho CM, Lam KH, Wei WI, et al. Occult lymph node metastasis in small oral tongue cancers. Head Neck. 1992;14:359–63.CrossRefPubMed
5.
go back to reference Spiro RH, Huvos AG, Wong GY, et al. Predictive value of tumor thickness in squamous carcinoma confined to the tongue and floor of the mouth. Am J Surg. 1986;152:345–50.CrossRefPubMed Spiro RH, Huvos AG, Wong GY, et al. Predictive value of tumor thickness in squamous carcinoma confined to the tongue and floor of the mouth. Am J Surg. 1986;152:345–50.CrossRefPubMed
6.
go back to reference Yu X, Li Z. MicroRNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J Cell Mol Med. 2016;20:10–6.CrossRefPubMed Yu X, Li Z. MicroRNA expression and its implications for diagnosis and therapy of tongue squamous cell carcinoma. J Cell Mol Med. 2016;20:10–6.CrossRefPubMed
7.
go back to reference Ko SY, Lin SC, Wong YK, et al. Increase of disintergin metalloprotease 10 (ADAM10) expression in oral squamous cell carcinoma. Cancer Lett. 2007;245:33–43.CrossRefPubMed Ko SY, Lin SC, Wong YK, et al. Increase of disintergin metalloprotease 10 (ADAM10) expression in oral squamous cell carcinoma. Cancer Lett. 2007;245:33–43.CrossRefPubMed
8.
go back to reference Yu B, Wei J, Qian X, et al. Notch1 signaling pathway participates in cancer invasion by regulating MMPs in lingual squamous cell carcinoma. Oncol Rep. 2012;27:547–52.PubMed Yu B, Wei J, Qian X, et al. Notch1 signaling pathway participates in cancer invasion by regulating MMPs in lingual squamous cell carcinoma. Oncol Rep. 2012;27:547–52.PubMed
9.
go back to reference Yoshida R, Nagata M, Nakayama H, et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab Invest. 2013;93:1068–81.CrossRefPubMed Yoshida R, Nagata M, Nakayama H, et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab Invest. 2013;93:1068–81.CrossRefPubMed
10.
go back to reference Upadhyay P, Nair S, Kaur E, et al. Notch pathway activation is essential for maintenance of stem-like cells in early tongue cancer. Oncotarget. 2016;7:50437–50,449.CrossRefPubMedPubMedCentral Upadhyay P, Nair S, Kaur E, et al. Notch pathway activation is essential for maintenance of stem-like cells in early tongue cancer. Oncotarget. 2016;7:50437–50,449.CrossRefPubMedPubMedCentral
11.
go back to reference Delbosc S, Glorian M, Le Port AS, et al. The benefit of docosahexanoic acid on the migration of vascular smooth muscle cells is partially dependent on Notch regulation of MMP-2/− 9. Am J Pathol. 2008;172:1430–40.CrossRefPubMedPubMedCentral Delbosc S, Glorian M, Le Port AS, et al. The benefit of docosahexanoic acid on the migration of vascular smooth muscle cells is partially dependent on Notch regulation of MMP-2/− 9. Am J Pathol. 2008;172:1430–40.CrossRefPubMedPubMedCentral
12.
go back to reference Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.CrossRefPubMed Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.CrossRefPubMed
13.
go back to reference Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit. 2004;10:RA235–41.PubMed Chu EC, Tarnawski AS. PTEN regulatory functions in tumor suppression and cell biology. Med Sci Monit. 2004;10:RA235–41.PubMed
14.
go back to reference Xie SM, Shen LJ, Yin C, et al. Expression of tumor suppressor gene PTEN, PIP3 and cyclin D1 in oral squamous cell carcinoma and their correlations. Zhonghua Kou Qiang Yi Xue Za Zhi. 2006;41:407–10.PubMed Xie SM, Shen LJ, Yin C, et al. Expression of tumor suppressor gene PTEN, PIP3 and cyclin D1 in oral squamous cell carcinoma and their correlations. Zhonghua Kou Qiang Yi Xue Za Zhi. 2006;41:407–10.PubMed
15.
go back to reference Squarize CH, Castilho RM, Abrahao AC, et al. PTEN Deficiency Contributes to the Development and Progression of Head and Neck Cancer. Neoplasia. 2013;15:461–71.CrossRefPubMedPubMedCentral Squarize CH, Castilho RM, Abrahao AC, et al. PTEN Deficiency Contributes to the Development and Progression of Head and Neck Cancer. Neoplasia. 2013;15:461–71.CrossRefPubMedPubMedCentral
16.
go back to reference Xie S, Lu Z, Lin Y, et al. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT). Tumour Biol. 2016;37:6681–9.CrossRefPubMed Xie S, Lu Z, Lin Y, et al. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial-mesenchymal transition (EMT). Tumour Biol. 2016;37:6681–9.CrossRefPubMed
17.
go back to reference Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25:1289–97.CrossRefPubMed Min BM, Lee G, Kim SH, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25:1289–97.CrossRefPubMed
18.
go back to reference Lake RJ, Tsai PF, Choi I, et al. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet. 2014;10:e1004204.CrossRefPubMedPubMedCentral Lake RJ, Tsai PF, Choi I, et al. RBPJ, the major transcriptional effector of Notch signaling, remains associated with chromatin throughout mitosis, suggesting a role in mitotic bookmarking. PLoS Genet. 2014;10:e1004204.CrossRefPubMedPubMedCentral
19.
go back to reference Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002;1:466–76.CrossRefPubMed Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002;1:466–76.CrossRefPubMed
20.
go back to reference Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22:6598–608.CrossRefPubMed Nickoloff BJ, Osborne BA, Miele L. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene. 2003;22:6598–608.CrossRefPubMed
21.
go back to reference Zhang TH, Liu HC, Zhu LJ, et al. Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med. 2011;40:37–45.CrossRefPubMed Zhang TH, Liu HC, Zhu LJ, et al. Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med. 2011;40:37–45.CrossRefPubMed
22.
go back to reference Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98:1512–20.CrossRefPubMed Moustakas A, Heldin CH. Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 2007;98:1512–20.CrossRefPubMed
23.
go back to reference Zhang X, Zhao X, Shao S, et al. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol. 2015;46:1141–8.CrossRefPubMed Zhang X, Zhao X, Shao S, et al. Notch1 induces epithelial-mesenchymal transition and the cancer stem cell phenotype in breast cancer cells and STAT3 plays a key role. Int J Oncol. 2015;46:1141–8.CrossRefPubMed
24.
go back to reference Shao S, Zhao X, Zhang X, et al. Notch1 signaling regulates the epithelial–mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Molecular Cancer. 2015;14:28.CrossRefPubMedPubMedCentral Shao S, Zhao X, Zhang X, et al. Notch1 signaling regulates the epithelial–mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Molecular Cancer. 2015;14:28.CrossRefPubMedPubMedCentral
25.
go back to reference Pece S, Confalonieri S, P RR, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. Biochim Biophys Acta. 2011;1815:26–43.PubMed Pece S, Confalonieri S, P RR, Di Fiore PP. NUMB-ing down cancer by more than just a NOTCH. Biochim Biophys Acta. 2011;1815:26–43.PubMed
26.
go back to reference Flores AN, McDermott N, Meunier A, Marignol L. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol. 2014;11:499–507.CrossRef Flores AN, McDermott N, Meunier A, Marignol L. NUMB inhibition of NOTCH signalling as a therapeutic target in prostate cancer. Nat Rev Urol. 2014;11:499–507.CrossRef
27.
go back to reference Zhou W, Fu XQ, Zhang LL, et al. The AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells. Cell Death Dis. 2013;4:e847.CrossRefPubMedPubMedCentral Zhou W, Fu XQ, Zhang LL, et al. The AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells. Cell Death Dis. 2013;4:e847.CrossRefPubMedPubMedCentral
28.
go back to reference Lee JI, Soria JC, Hassan KA, et al. Loss of PTEN expression as a prognostic marker for tongue cancer. Arch Otolaryngol Head Neck Surg. 2001;127:1441–5.CrossRefPubMed Lee JI, Soria JC, Hassan KA, et al. Loss of PTEN expression as a prognostic marker for tongue cancer. Arch Otolaryngol Head Neck Surg. 2001;127:1441–5.CrossRefPubMed
Metadata
Title
RETRACTED ARTICLE: Numb inhibits epithelial-mesenchymal transition via RBP-Jκ-dependent Notch1/PTEN/FAK signaling pathway in tongue cancer
Authors
Jin-Yun Li
Wen-Xiao Huang
Xiao Zhou
Jie Chen
Zan Li
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Metastasis
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5605-5

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine