Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Breast Cancer | Research article

Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis

Authors: Arturo B. Ramirez, Raksha Bhat, Debashish Sahay, Carmine De Angelis, Hariprasad Thangavel, Sina Hedayatpour, Lacey E. Dobrolecki, Agostina Nardone, Mario Giuliano, Chandandeep Nagi, Mothaffar Rimawi, C. Kent Osborne, Michael T. Lewis, Jackie L. Stilwell, Eric P. Kaldjian, Rachel Schiff, Meghana V. Trivedi

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Breast cancer patient-derived xenograft (BC-PDX) models represent a continuous and reproducible source of circulating tumor cells (CTCs) for studying their role in tumor biology and metastasis. We have previously shown the utility of BC-PDX models in the study of CTCs by immunohistochemistry (IHC) on serial paraffin sections and manual microscopic identification of cytokeratin-positive cells, a method that is both low-throughput and labor-intensive. We therefore aimed to identify and characterize CTCs from small volume mouse blood samples and examined its practical workflow in a study of BC-PDX mice treated with chemotherapy using an automated imaging platform, the AccuCyte®–CyteFinder® system.

Methods

CTC analysis was conducted using blood from non-tumor bearing SCID/Beige mice spiked with human breast cancer cells, BC-PDX-bearing mice, and BC-PDX mice treated with vehicle or chemotherapeutic agent(s). After red blood cell lysis, nucleated cells were mixed with transfer solution, processed onto microscope slides, and stained by immunofluorescence. The CyteFinder automated scanning microscope was used to identify CTCs, defined as nucleated cells that were human cytokeratin-positive, and mouse CD45-negative. Disaggregated primary BC-PDX tumors and lung metastatic nodules were processed using the same immunostaining protocol. Collective expression of breast cancer cell surface markers (EpCAM, EGFR, and HER2) using a cocktail of target-specific antibodies was assessed. CTCs and disaggregated tumor cells were individually retrieved from slides using the CytePicker® module for sequence analysis of a BC-PDX tumor-specific PIK3CA mutation.

Results

The recovery rate of human cancer cells spiked into murine blood was 83 ± 12%. CTC detection was not significantly different from the IHC method. One-third of CTCs did not stain positive for cell surface markers. A PIK3CA T1035A mutation present in a BC-PDX tumor was confirmed in isolated single CTCs and cells from dissociated metastatic nodules after whole genome amplification and sequencing. CTC evaluation could be simply implemented into a preclinical PDX therapeutic study setting with substantial improvements in workflow over the IHC method.

Conclusions

Analysis of small volume blood samples from BC-PDX-bearing mice using the AccuCyte–CyteFinder system allows investigation of the role of CTCs in tumor biology and metastasis independent of surface marker expression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lee JS, Magbanua MJM, Park JW. Circulating tumor cells in breast cancer: applications in personalized medicine. Breast Cancer Res Treat. 2016;160(3):411–24.PubMed Lee JS, Magbanua MJM, Park JW. Circulating tumor cells in breast cancer: applications in personalized medicine. Breast Cancer Res Treat. 2016;160(3):411–24.PubMed
2.
go back to reference Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol. 2017;11(1):40–61.PubMedPubMedCentral Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol. 2017;11(1):40–61.PubMedPubMedCentral
4.
go back to reference Giordano A, Giuliano M, De Laurentiis M, Eleuteri A, Iorio F, Tagliaferri R, Hortobagyi GN, Pusztai L, De Placido S, Hess K, et al. Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients. Breast Cancer Res Treat. 2011;129(2):451–8.PubMed Giordano A, Giuliano M, De Laurentiis M, Eleuteri A, Iorio F, Tagliaferri R, Hortobagyi GN, Pusztai L, De Placido S, Hess K, et al. Artificial neural network analysis of circulating tumor cells in metastatic breast cancer patients. Breast Cancer Res Treat. 2011;129(2):451–8.PubMed
5.
go back to reference Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91.PubMed Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov. 2016;6(5):479–91.PubMed
6.
go back to reference Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31(2):172–9.PubMed Bardelli A, Pantel K. Liquid biopsies, what we do not know (yet). Cancer Cell. 2017;31(2):172–9.PubMed
7.
go back to reference Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21(21):4786–800.PubMed Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21(21):4786–800.PubMed
8.
go back to reference Joosse SA, Pantel K. Biologic challenges in the detection of circulating tumor cells. Cancer Res. 2013;73(1):8–11.PubMed Joosse SA, Pantel K. Biologic challenges in the detection of circulating tumor cells. Cancer Res. 2013;73(1):8–11.PubMed
9.
go back to reference Giuliano M, Herrera S, Christiny P, Shaw C, Creighton CJ, Mitchell T, Bhat R, Zhang X, Mao S, Dobrolecki LE, et al. Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Res. 2015;17:3.PubMedPubMedCentral Giuliano M, Herrera S, Christiny P, Shaw C, Creighton CJ, Mitchell T, Bhat R, Zhang X, Mao S, Dobrolecki LE, et al. Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. Breast Cancer Res. 2015;17:3.PubMedPubMedCentral
10.
go back to reference Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97.PubMedPubMedCentral Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, et al. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73(15):4885–97.PubMedPubMedCentral
11.
go back to reference Kitz J, Lowes LE, Goodale D, Allan AL. Circulating tumor cell analysis in preclinical mouse models of metastasis. Diagnostics (Basel). 2018;8(2):30. Kitz J, Lowes LE, Goodale D, Allan AL. Circulating tumor cell analysis in preclinical mouse models of metastasis. Diagnostics (Basel). 2018;8(2):30.
12.
go back to reference Eliane JP, Repollet M, Luker KE, Brown M, Rae JM, Dontu G, Schott AF, Wicha M, Doyle GV, Hayes DF, et al. Monitoring serial changes in circulating human breast cancer cells in murine xenograft models. Cancer Res. 2008;68(14):5529–32.PubMedPubMedCentral Eliane JP, Repollet M, Luker KE, Brown M, Rae JM, Dontu G, Schott AF, Wicha M, Doyle GV, Hayes DF, et al. Monitoring serial changes in circulating human breast cancer cells in murine xenograft models. Cancer Res. 2008;68(14):5529–32.PubMedPubMedCentral
13.
go back to reference Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, Varshavskaya P, Friemel BH, Quarre S, Breman A, Dorschner M, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15:360.PubMedPubMedCentral Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, Varshavskaya P, Friemel BH, Quarre S, Breman A, Dorschner M, et al. High-recovery visual identification and single-cell retrieval of circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining. BMC Cancer. 2015;15:360.PubMedPubMedCentral
14.
go back to reference Kaldjian EP, Ramirez AB, Sun Y, Campton DE, Werbin JL, Varshavskaya P, Quarre S, George T, Madan A, Blau CA, et al. The RareCyte(R) platform for next-generation analysis of circulating tumor cells. Cytometry A. 2018;93(12):1220–5.PubMed Kaldjian EP, Ramirez AB, Sun Y, Campton DE, Werbin JL, Varshavskaya P, Quarre S, George T, Madan A, Blau CA, et al. The RareCyte(R) platform for next-generation analysis of circulating tumor cells. Cytometry A. 2018;93(12):1220–5.PubMed
15.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedPubMedCentral
16.
go back to reference Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91.PubMed Koressaar T, Remm M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 2007;23(10):1289–91.PubMed
17.
go back to reference Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.PubMedPubMedCentral Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3--new capabilities and interfaces. Nucleic Acids Res. 2012;40(15):e115.PubMedPubMedCentral
18.
go back to reference Blois AL, Donovan MJ, Sciuto TE, Walsh KC, Tadros J, Gertler FB, Hamilton DA: MenaINV a novel therapeutic target for prevention and treatment of metastatic disease. In: Proceedings of the American Association for Cancer Research Cancer dormancy and residual disease; 2018 Jun 19-22; Montreal, QC, Canada: Abstract nr A07. Blois AL, Donovan MJ, Sciuto TE, Walsh KC, Tadros J, Gertler FB, Hamilton DA: MenaINV a novel therapeutic target for prevention and treatment of metastatic disease. In: Proceedings of the American Association for Cancer Research Cancer dormancy and residual disease; 2018 Jun 19-22; Montreal, QC, Canada: Abstract nr A07.
19.
go back to reference Roy S, Martinez K, Ramirez A, Campton D, Nordberg J, Kaldjian E, Dylla SJ, Karsunky H: Feasibility of assessing circulating tumor cells in patient-derived xenograft tumor models. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res. 2016;76(14 Suppl):Abstract nr 646. Roy S, Martinez K, Ramirez A, Campton D, Nordberg J, Kaldjian E, Dylla SJ, Karsunky H: Feasibility of assessing circulating tumor cells in patient-derived xenograft tumor models. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res. 2016;76(14 Suppl):Abstract nr 646.
20.
go back to reference Joosse SA, Hannemann J, Spotter J, Bauche A, Andreas A, Muller V, Pantel K. Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin Cancer Res. 2012;18(4):993–1003.PubMed Joosse SA, Hannemann J, Spotter J, Bauche A, Andreas A, Muller V, Pantel K. Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. Clin Cancer Res. 2012;18(4):993–1003.PubMed
21.
go back to reference Grover PK, Cummins AG, Price TJ, Roberts-Thomson IC, Hardingham JE. Circulating tumour cells: the evolving concept and the inadequacy of their enrichment by EpCAM-based methodology for basic and clinical cancer research. Ann Oncol. 2014;25(8):1506–16.PubMed Grover PK, Cummins AG, Price TJ, Roberts-Thomson IC, Hardingham JE. Circulating tumour cells: the evolving concept and the inadequacy of their enrichment by EpCAM-based methodology for basic and clinical cancer research. Ann Oncol. 2014;25(8):1506–16.PubMed
22.
go back to reference Alix-Panabieres C, Pantel K. Technologies for detection of circulating tumor cells: facts and vision. Lab Chip. 2014;14(1):57–62.PubMed Alix-Panabieres C, Pantel K. Technologies for detection of circulating tumor cells: facts and vision. Lab Chip. 2014;14(1):57–62.PubMed
23.
go back to reference Gorges TM, Tinhofer I, Drosch M, Rose L, Zollner TM, Krahn T, von Ahsen O. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012;12:178.PubMedPubMedCentral Gorges TM, Tinhofer I, Drosch M, Rose L, Zollner TM, Krahn T, von Ahsen O. Circulating tumour cells escape from EpCAM-based detection due to epithelial-to-mesenchymal transition. BMC Cancer. 2012;12:178.PubMedPubMedCentral
24.
go back to reference Guibert N, Pradines A, Farella M, Casanova A, Gouin S, Keller L, Favre G, Mazieres J. Monitoring KRAS mutations in circulating DNA and tumor cells using digital droplet PCR during treatment of KRAS-mutated lung adenocarcinoma. Lung Cancer. 2016;100:1–4.PubMed Guibert N, Pradines A, Farella M, Casanova A, Gouin S, Keller L, Favre G, Mazieres J. Monitoring KRAS mutations in circulating DNA and tumor cells using digital droplet PCR during treatment of KRAS-mutated lung adenocarcinoma. Lung Cancer. 2016;100:1–4.PubMed
25.
go back to reference Pestrin M, Salvianti F, Galardi F, De Luca F, Turner N, Malorni L, Pazzagli M, Di Leo A, Pinzani P. Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients. Mol Oncol. 2015;9(4):749–57.PubMed Pestrin M, Salvianti F, Galardi F, De Luca F, Turner N, Malorni L, Pazzagli M, Di Leo A, Pinzani P. Heterogeneity of PIK3CA mutational status at the single cell level in circulating tumor cells from metastatic breast cancer patients. Mol Oncol. 2015;9(4):749–57.PubMed
26.
go back to reference Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77.PubMedPubMedCentral Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, et al. Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med. 2008;359(4):366–77.PubMedPubMedCentral
27.
go back to reference Wills QF, Mead AJ. Application of single-cell genomics in cancer: promise and challenges. Hum Mol Genet. 2015;24(R1):R74–84.PubMedPubMedCentral Wills QF, Mead AJ. Application of single-cell genomics in cancer: promise and challenges. Hum Mol Genet. 2015;24(R1):R74–84.PubMedPubMedCentral
28.
go back to reference Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S. Single-cell sequencing for precise Cancer research: Progress and prospects. Cancer Res. 2016;76(6):1305–12.PubMed Zhang X, Marjani SL, Hu Z, Weissman SM, Pan X, Wu S. Single-cell sequencing for precise Cancer research: Progress and prospects. Cancer Res. 2016;76(6):1305–12.PubMed
29.
go back to reference CTC clusters more likely to cause metastasis. Cancer Discov. 2014;4(11):1246–7. CTC clusters more likely to cause metastasis. Cancer Discov. 2014;4(11):1246–7.
30.
go back to reference Fabisiewicz A, Grzybowska E. CTC clusters in cancer progression and metastasis. Med Oncol. 2017;34(1):12.PubMed Fabisiewicz A, Grzybowska E. CTC clusters in cancer progression and metastasis. Med Oncol. 2017;34(1):12.PubMed
31.
go back to reference Giuliano M, Shaikh A, Lo HC, Arpino G, De Placido S, Zhang XH, Cristofanilli M, Schiff R, Trivedi MV. Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Cancer Res. 2018;78(4):845–52.PubMed Giuliano M, Shaikh A, Lo HC, Arpino G, De Placido S, Zhang XH, Cristofanilli M, Schiff R, Trivedi MV. Perspective on circulating tumor cell clusters: why it takes a village to metastasize. Cancer Res. 2018;78(4):845–52.PubMed
Metadata
Title
Circulating tumor cell investigation in breast cancer patient-derived xenograft models by automated immunofluorescence staining, image acquisition, and single cell retrieval and analysis
Authors
Arturo B. Ramirez
Raksha Bhat
Debashish Sahay
Carmine De Angelis
Hariprasad Thangavel
Sina Hedayatpour
Lacey E. Dobrolecki
Agostina Nardone
Mario Giuliano
Chandandeep Nagi
Mothaffar Rimawi
C. Kent Osborne
Michael T. Lewis
Jackie L. Stilwell
Eric P. Kaldjian
Rachel Schiff
Meghana V. Trivedi
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5382-1

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine