Skip to main content
Top
Published in: BMC Cancer 1/2019

Open Access 01-12-2019 | Meningioma | Research article

A comprehensive study of risk factors for post-operative pneumonia following resection of meningioma

Authors: M. R. Zuo, R. F. Liang, M. Li, Y. F. Xiang, S. X. Zhang, Y. Yang, X. Wang, Q. Mao, Y. H. Liu

Published in: BMC Cancer | Issue 1/2019

Login to get access

Abstract

Background

Post-operative pneumonia (Pop) following meningioma surgery is the dominant systemic complication which could cause serious threats to patients. It is unclear whether hematological biochemical markers are independently associated with the Pop. This study attempted to perform a more comprehensive study of taking both clinical factors and hematological biomarkers into account to promote the management of patients after meningioma surgery.

Methods

We collected clinical and hematological parameters of 1156 patients undergoing meningioma resection from January 2009 to January 2013. According to whether the symptoms of pneumonia had manifested,patients were divided into the Pop group and the Non-Pop group. We analyzed the distinctions of clinical factors between the two groups. We successively performed univariate and multivariate regression analysis to identify risk factors independently associated with the Pop.

Results

4.4% patients infected with the Pop (51 of 1156). The median age at diagnosis of the Pop patients was significantly older than the Non-Pop group (p = 0.002). There were strike distinctions of post-operative hospital stays between two groups, with 21 days and 7 days each (p < 0.001). On multivariate analysis, tumor relapse (p < 0.001), skull base lesions (p = 0.001), intra-operative blood transfusion (p = 0.018) and cardiovascular diseases (p = 0.001) were linked with increased risk of the Pop following meningioma resection. For hematological biochemical markers, it was the factor of Red blood cell distribution width-standard deviation (RDW-SD) (OR 5.267, 95%CI 1.316, 21.078; p = 0.019) and Neutrophils lymphocytes ratio (NLR) (OR 2.081, 95%CI 1.063, 4.067; p = 0.033) that could appreciably predict the Pop.

Conclusions

Apart from tumor recurrence, localizations, intra-operative blood transfusion and cardiovascular diseases are independent risk factors for the Pop. We initially found hematological RDW-SD and NLR are also important predictors.
Literature
1.
go back to reference Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15(Suppl 2):ii1–56.CrossRef Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15(Suppl 2):ii1–56.CrossRef
2.
go back to reference Black PM, Morokoff AP, Zauberman J. Surgery for extra-axial tumors of the cerebral convexity and midline. Neurosurgery. 2008;62:1121–3.CrossRef Black PM, Morokoff AP, Zauberman J. Surgery for extra-axial tumors of the cerebral convexity and midline. Neurosurgery. 2008;62:1121–3.CrossRef
3.
go back to reference Sanai N, Sughrue ME, Shangari G, Chung K, Berger MS, Mcdermott MW. Risk profile associated with convexity meningioma resection in the modern neurosurgical era. J Neurosurg. 2010;112:913–9.CrossRef Sanai N, Sughrue ME, Shangari G, Chung K, Berger MS, Mcdermott MW. Risk profile associated with convexity meningioma resection in the modern neurosurgical era. J Neurosurg. 2010;112:913–9.CrossRef
4.
go back to reference Saraf S, McCarthy BJ, Villano JL. Update on meningiomas. Oncologist. 2011;16(11):1604–13.CrossRef Saraf S, McCarthy BJ, Villano JL. Update on meningiomas. Oncologist. 2011;16(11):1604–13.CrossRef
5.
go back to reference Yew A, Trang A, Nagasawa DT. Chromosomal alterations, prognostic factors, and targeted molecular therapies for malignant meningiomas. J Clin Neurosci. 2013;20:17–22.CrossRef Yew A, Trang A, Nagasawa DT. Chromosomal alterations, prognostic factors, and targeted molecular therapies for malignant meningiomas. J Clin Neurosci. 2013;20:17–22.CrossRef
6.
go back to reference Stafford SL, Perry A, Suman VJ, Meyer FB, Scheithauer BW, Lohse CM, et al. Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc. 1998;73:936.CrossRef Stafford SL, Perry A, Suman VJ, Meyer FB, Scheithauer BW, Lohse CM, et al. Primarily resected meningiomas: outcome and prognostic factors in 581 Mayo Clinic patients, 1978 through 1988. Mayo Clin Proc. 1998;73:936.CrossRef
7.
go back to reference Sughrue ME, Rutkowski MJ, Shangari G, Chang HQ, Parsa AT, Berger MS, et al. Risk factors for the development of serious medical complications after resection of meningiomas. Clinical article. J Neurosurg. 2011;114:697–704.CrossRef Sughrue ME, Rutkowski MJ, Shangari G, Chang HQ, Parsa AT, Berger MS, et al. Risk factors for the development of serious medical complications after resection of meningiomas. Clinical article. J Neurosurg. 2011;114:697–704.CrossRef
8.
9.
go back to reference Demonte F, Smith HK, Almefty O. Outcome of aggressive removal of cavernous sinus meningiomas. J Neurosurg. 1994;81:245–51.CrossRef Demonte F, Smith HK, Almefty O. Outcome of aggressive removal of cavernous sinus meningiomas. J Neurosurg. 1994;81:245–51.CrossRef
10.
go back to reference Arozullah AM, Khuri SF, Henderson WG, Daley J. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med. 2001;135:847–57.CrossRef Arozullah AM, Khuri SF, Henderson WG, Daley J. Development and validation of a multifactorial risk index for predicting postoperative pneumonia after major noncardiac surgery. Ann Intern Med. 2001;135:847–57.CrossRef
11.
go back to reference Garibaldi RA, Britt MR, Coleman ML, Reading JC, Pace NL. Risk factors for - pneumonia. Am J Med. 1981;70:677–80.CrossRef Garibaldi RA, Britt MR, Coleman ML, Reading JC, Pace NL. Risk factors for - pneumonia. Am J Med. 1981;70:677–80.CrossRef
12.
go back to reference Umansky F, Ashkenazi E, Gertel M, Shalit MN. Surgical outcome in an elderly population with intracranial meningioma. J Neurol Neurosurg Psychiatry. 1992;55:481–5.CrossRef Umansky F, Ashkenazi E, Gertel M, Shalit MN. Surgical outcome in an elderly population with intracranial meningioma. J Neurol Neurosurg Psychiatry. 1992;55:481–5.CrossRef
13.
go back to reference Black P, Kathiresan S, Chung W. Meningioma surgery in the elderly: a case-control study assessing morbidity and mortality. Acta Neurochir. 1998;140:1016–7.CrossRef Black P, Kathiresan S, Chung W. Meningioma surgery in the elderly: a case-control study assessing morbidity and mortality. Acta Neurochir. 1998;140:1016–7.CrossRef
14.
go back to reference Chu H, Dang BW. Risk factors of postoperative pulmonary complications following elective craniotomy for patients with tumors of the brainstem or adjacent to the brainstem. Oncol Lett. 2014;8:1477–81.CrossRef Chu H, Dang BW. Risk factors of postoperative pulmonary complications following elective craniotomy for patients with tumors of the brainstem or adjacent to the brainstem. Oncol Lett. 2014;8:1477–81.CrossRef
15.
go back to reference Dietrich ES, Demmler M, Schulgen G, Fekec K, Mast O, Pelz K, et al. Nosocomial pneumonia: a cost-of-illness analysis. Infection. 2002;30:61–7.CrossRef Dietrich ES, Demmler M, Schulgen G, Fekec K, Mast O, Pelz K, et al. Nosocomial pneumonia: a cost-of-illness analysis. Infection. 2002;30:61–7.CrossRef
16.
go back to reference Kallio M, Sankila R, Hakulinen T, Jääskeläinen J. Factors affecting operative and excess long-term mortality in 935 patients with intracranial meningioma. Neurosurgery. 1992;31(1):2–12.PubMed Kallio M, Sankila R, Hakulinen T, Jääskeläinen J. Factors affecting operative and excess long-term mortality in 935 patients with intracranial meningioma. Neurosurgery. 1992;31(1):2–12.PubMed
17.
go back to reference Mohri Y, Tonouchi H, Miki C, Kobayashi M, Kusunoki M. Incidence and risk factors for hospital-acquired pneumonia after surgery for gastric cancer: results of prospective surveillance. World J Surg. 2008;32:1045–50.CrossRef Mohri Y, Tonouchi H, Miki C, Kobayashi M, Kusunoki M. Incidence and risk factors for hospital-acquired pneumonia after surgery for gastric cancer: results of prospective surveillance. World J Surg. 2008;32:1045–50.CrossRef
18.
go back to reference Oh T, Safaee M, Sun MZ, Garcia RM, Mcdermott MW, Parsa AT, et al. Surgical risk factors for post-operative pneumonia following meningioma resection. Clin Neurol Neurosurg. 2014;118:76–9.CrossRef Oh T, Safaee M, Sun MZ, Garcia RM, Mcdermott MW, Parsa AT, et al. Surgical risk factors for post-operative pneumonia following meningioma resection. Clin Neurol Neurosurg. 2014;118:76–9.CrossRef
19.
go back to reference Welsch T, Müller SA, Ulrich A, Kischlat A, Hinz U, Kienle P, et al. C-reactive protein as early predictor for infectious postoperative complications in rectal surgery. Int J Color Dis. 2007;22:1499–507.CrossRef Welsch T, Müller SA, Ulrich A, Kischlat A, Hinz U, Kienle P, et al. C-reactive protein as early predictor for infectious postoperative complications in rectal surgery. Int J Color Dis. 2007;22:1499–507.CrossRef
20.
go back to reference Danan D, Jr SD, Selman Y, Chow Z, Smolkin ME, Jameson MJ. Prognostic value of albumin in patients with head and neck cancer. Laryngoscope. 2016;126:1567.CrossRef Danan D, Jr SD, Selman Y, Chow Z, Smolkin ME, Jameson MJ. Prognostic value of albumin in patients with head and neck cancer. Laryngoscope. 2016;126:1567.CrossRef
21.
go back to reference Lv H, Yin P, Long A, Gao Y, Zhao Z, Li J, et al. Clinical characteristics and risk factors of postoperative pneumonia after hip fracture surgery: a prospective cohort study. Osteoporos Int. 2016;27:1–9.CrossRef Lv H, Yin P, Long A, Gao Y, Zhao Z, Li J, et al. Clinical characteristics and risk factors of postoperative pneumonia after hip fracture surgery: a prospective cohort study. Osteoporos Int. 2016;27:1–9.CrossRef
22.
go back to reference Kieninger AN, Lipsett PA. Hospital-acquired pneumonia: pathophysiology, diagnosis, and treatment. Surg Clin North Am. 2009;89:439–61.CrossRef Kieninger AN, Lipsett PA. Hospital-acquired pneumonia: pathophysiology, diagnosis, and treatment. Surg Clin North Am. 2009;89:439–61.CrossRef
23.
go back to reference Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2014;250:187.CrossRef Clavien PA, Barkun J, de Oliveira ML, Vauthey JN, Dindo D, Schulick RD, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2014;250:187.CrossRef
24.
go back to reference Niederman MS, Craven DE. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef Niederman MS, Craven DE. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171:388–416.CrossRef
25.
go back to reference Domingues PH, Sousa P, Otero Á, Gonçalves JM, Ruiz L, De OC, et al. Proposal for a new risk stratification classification for meningioma based on patient age, WHO tumor grade, size, localization, and karyotype. Neuro-Oncology. 2014;16:735–47.CrossRef Domingues PH, Sousa P, Otero Á, Gonçalves JM, Ruiz L, De OC, et al. Proposal for a new risk stratification classification for meningioma based on patient age, WHO tumor grade, size, localization, and karyotype. Neuro-Oncology. 2014;16:735–47.CrossRef
26.
go back to reference Wang C, Li T, Tang S, Zhang Y. Risk factors for postoperative pneumonia after microsurgery for vestibular schwannoma. Clin Neurol Neurosurg. 2017;162:25.CrossRef Wang C, Li T, Tang S, Zhang Y. Risk factors for postoperative pneumonia after microsurgery for vestibular schwannoma. Clin Neurol Neurosurg. 2017;162:25.CrossRef
27.
go back to reference Ferguson SD, Levine NB, Suki D, Tsung AJ, Lang FF, Sawaya R, et al. The surgical treatment of tumors of the fourth ventricle: a single-institution experience. J Neurosurg. 2018;128(2):339–51.CrossRef Ferguson SD, Levine NB, Suki D, Tsung AJ, Lang FF, Sawaya R, et al. The surgical treatment of tumors of the fourth ventricle: a single-institution experience. J Neurosurg. 2018;128(2):339–51.CrossRef
28.
go back to reference D'Journo XB, Michelet P, Marin V, Diesnis I, Blayac D, Doddoli C, et al. An early inflammatory response to oesophagectomy predicts the occurrence of pulmonary complications. Eur J Cardiothorac Surg. 2010;37(5):1144–51.CrossRef D'Journo XB, Michelet P, Marin V, Diesnis I, Blayac D, Doddoli C, et al. An early inflammatory response to oesophagectomy predicts the occurrence of pulmonary complications. Eur J Cardiothorac Surg. 2010;37(5):1144–51.CrossRef
29.
go back to reference Díazravetllat V, Ferrer M, Gimferrergarolera JM, Molins L, Torres A. Risk factors of postoperative nosocomial pneumonia after resection of bronchogenic carcinoma. Respir Med. 2012;106:1463–71.CrossRef Díazravetllat V, Ferrer M, Gimferrergarolera JM, Molins L, Torres A. Risk factors of postoperative nosocomial pneumonia after resection of bronchogenic carcinoma. Respir Med. 2012;106:1463–71.CrossRef
30.
go back to reference Soutome S, Yanamoto S, Funahara M, Hasegawa T, Komori T, Yamada SI, et al. Effect of perioperative oral care on prevention of postoperative pneumonia associated with esophageal cancer surgery: a multicenter case-control study with propensity score matching analysis. Medicine. 2017;96:e7436.CrossRef Soutome S, Yanamoto S, Funahara M, Hasegawa T, Komori T, Yamada SI, et al. Effect of perioperative oral care on prevention of postoperative pneumonia associated with esophageal cancer surgery: a multicenter case-control study with propensity score matching analysis. Medicine. 2017;96:e7436.CrossRef
31.
go back to reference Kaley T, Barani I, Chamberlain M, Mcdermott M, Panageas K, Raizer J, et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro-Oncology. 2014;16:829–40.CrossRef Kaley T, Barani I, Chamberlain M, Mcdermott M, Panageas K, Raizer J, et al. Historical benchmarks for medical therapy trials in surgery- and radiation-refractory meningioma: a RANO review. Neuro-Oncology. 2014;16:829–40.CrossRef
32.
go back to reference Gajdos C, Hawn MT, Campagna EJ, Henderson WG, Singh JA, Houston T. Adverse effects of smoking on postoperative outcomes in cancer patients. Ann Surg Oncol. 2012;19:1430–8.CrossRef Gajdos C, Hawn MT, Campagna EJ, Henderson WG, Singh JA, Houston T. Adverse effects of smoking on postoperative outcomes in cancer patients. Ann Surg Oncol. 2012;19:1430–8.CrossRef
33.
go back to reference Kust D, Lucijanic M, Urch K, Samija I, Celap I, Kruljac I, et al. Clinical and prognostic significance of anisocytosis measured as a red cell distribution width in patients with colorectal cancer. QJM. 2017;110(6):361–7.PubMed Kust D, Lucijanic M, Urch K, Samija I, Celap I, Kruljac I, et al. Clinical and prognostic significance of anisocytosis measured as a red cell distribution width in patients with colorectal cancer. QJM. 2017;110(6):361–7.PubMed
34.
go back to reference Wang X, Jiang R, Li K. Prognostic significance of pretreatment laboratory parameters in combined small-cell lung cancer. Cell Biochem Biophys. 2014;69:633–40.CrossRef Wang X, Jiang R, Li K. Prognostic significance of pretreatment laboratory parameters in combined small-cell lung cancer. Cell Biochem Biophys. 2014;69:633–40.CrossRef
35.
go back to reference Elmoamly S, Afif A. Can biomarkers of coagulation, platelet activation, and inflammation predict mortality in patients with hematological malignancies? Hematology. 2018;23(2):89–95.CrossRef Elmoamly S, Afif A. Can biomarkers of coagulation, platelet activation, and inflammation predict mortality in patients with hematological malignancies? Hematology. 2018;23(2):89–95.CrossRef
36.
go back to reference Karimi S, Vyas MV, Gonen L, Tabasinejad R, Ostrom Q, Barnholtzsloan J, et al. Prognostic significance of preoperative neutrophilia on recurrence-free survival in meningioma. Neuro-Oncology. 2017;19(11):1503–10.CrossRef Karimi S, Vyas MV, Gonen L, Tabasinejad R, Ostrom Q, Barnholtzsloan J, et al. Prognostic significance of preoperative neutrophilia on recurrence-free survival in meningioma. Neuro-Oncology. 2017;19(11):1503–10.CrossRef
37.
go back to reference Nathan SD, Reffett T, Brown AW, Fischer CP, Shlobin OA, Ahmad S, et al. The red cell distribution width as a prognostic Indicator in idiopathic pulmonary fibrosis. Chest. 2013;143:1692–8.CrossRef Nathan SD, Reffett T, Brown AW, Fischer CP, Shlobin OA, Ahmad S, et al. The red cell distribution width as a prognostic Indicator in idiopathic pulmonary fibrosis. Chest. 2013;143:1692–8.CrossRef
38.
go back to reference Tonelli M, Sacks F, Arnold M, Moye L, Davis B, Pfeffer M. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008;117:163–8.CrossRef Tonelli M, Sacks F, Arnold M, Moye L, Davis B, Pfeffer M. Relation between red blood cell distribution width and cardiovascular event rate in people with coronary disease. Circulation. 2008;117:163–8.CrossRef
Metadata
Title
A comprehensive study of risk factors for post-operative pneumonia following resection of meningioma
Authors
M. R. Zuo
R. F. Liang
M. Li
Y. F. Xiang
S. X. Zhang
Y. Yang
X. Wang
Q. Mao
Y. H. Liu
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2019
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5271-7

Other articles of this Issue 1/2019

BMC Cancer 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine