Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Technical advance

A novel detection methodology for HER2 protein quantitation in formalin-fixed, paraffin embedded clinical samples using fluorescent nanoparticles: an analytical and clinical validation study

Authors: David G. Hicks, Brandon Buscaglia, Hideki Goda, Loralee McMahon, Takako Natori, Bradley Turner, Armen Soukiazian, Hisatake Okada, Yasushi Nakano

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Clinical assays for the assessment of the human epidermal growth factor receptor-2 (HER2) status in breast cancer include immunohistochemistry (IHC) and in situ hybridization (ISH), both of which have limitations. Recent studies have suggested that a more quantitative approach to the measurement of HER2 protein expression may improve specificity in selecting patients for HER-2 targeted therapy. In the current study, we have used HER2 expression in breast cancer cell lines and clinical samples as a model to explore the potential utility of a novel immunodetection technique, using streptavidin coated Phosphor Integrated Dot fluorescent nanoparticles (PID), which can be quantitatively measured using computer analysis.

Methods

The expression of HER2 protein in cell lines was evaluated with antibody-binding capacity using fluorescence-activated cell sorting (FACS) for comparison with PID measurements to test for correlations with existing quantitative protein analysis methodologies. Various other analytic validation tests were also performed, including accuracy, precision, sensitivity, robustness and reproducibility. A methods comparison study investigated correlations between PID versus IHC and ISH in clinical samples. Lastly, we measured HER2 protein expression using PID in the pretreatment biopsies from 34 HER2-positive carcinomas that had undergone neoadjuvant trastuzumab-based chemotherapy.

Results

In the analytic validation, PID HER2 measurements showed a strong linear correlation with FACS analysis in breast cell lines, and demonstrated significant correlations with all aspects of precision, sensitivity, robustness and reproducibility. PID also showed strong correlations with conventional HER2 testing methodologies (IHC and ISH). In the neoadjuvant study, patients with a pathologic complete response (pCR) had a significantly higher PID score compared with patients who did not achieve a pCR (p = 0.011), and was significantly correlated to residual cancer burden (RCB) class (p = 0.026, R2 = 0.9975).

Conclusions

Analytic testing of PID showed that it may be a viable testing methodology that could offer advantages over other experimental or conventional biomarker diagnostic methodologies. Our data also suggests that PID quantitation of HER2 protein may offer an improvement over conventional HER2 testing in the selection of patients who will be the most likely to benefit from HER2-targeted therapy. Further studies with a larger cohort are warranted.
Literature
1.
go back to reference Ross JS, Fletcher JA, Linette GP, et al. The her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 2003;8(4):307–25.PubMedCrossRef Ross JS, Fletcher JA, Linette GP, et al. The her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist. 2003;8(4):307–25.PubMedCrossRef
2.
go back to reference Pegram MD, Konecny G, Slamon DJ. The molecular and cellular biology of HER2/neu gene amplification/over-expression and the clinical development of Herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res. 2000;103:57–75.PubMedCrossRef Pegram MD, Konecny G, Slamon DJ. The molecular and cellular biology of HER2/neu gene amplification/over-expression and the clinical development of Herceptin (trastuzumab) therapy for breast cancer. Cancer Treat Res. 2000;103:57–75.PubMedCrossRef
3.
go back to reference Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.PubMedCrossRef Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.PubMedCrossRef
4.
go back to reference Perez EA, Romond EH, Suman VJ, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29(25):3366–73.PubMedPubMedCentralCrossRef Perez EA, Romond EH, Suman VJ, et al. Four-year follow-up of trastuzumab plus adjuvant chemotherapy for operable human epidermal growth factor receptor 2-positive breast cancer: joint analysis of data from NCCTG N9831 and NSABP B-31. J Clin Oncol. 2011;29(25):3366–73.PubMedPubMedCentralCrossRef
5.
go back to reference Gianni L, Dafni U, Gelber RD, et al. Herceptin adjuvant (HERA) trial study team. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12(3):236–44.PubMedCrossRef Gianni L, Dafni U, Gelber RD, et al. Herceptin adjuvant (HERA) trial study team. Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 2011;12(3):236–44.PubMedCrossRef
6.
go back to reference Dent S, Oyan B, Honig A, et al. HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treat Rev. 2013;39(6):622–31.PubMedCrossRef Dent S, Oyan B, Honig A, et al. HER2-targeted therapy in breast cancer: a systematic review of neoadjuvant trials. Cancer Treat Rev. 2013;39(6):622–31.PubMedCrossRef
7.
go back to reference Amiri-Kordestani L, Wedam S, Zhang L, et al. First FDA approval of neoadjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER2-positive breast cancer. Clin Cancer Res. 2014;20(21):5359–64.PubMedCrossRef Amiri-Kordestani L, Wedam S, Zhang L, et al. First FDA approval of neoadjuvant therapy for breast cancer: pertuzumab for the treatment of patients with HER2-positive breast cancer. Clin Cancer Res. 2014;20(21):5359–64.PubMedCrossRef
8.
go back to reference Hicks DG, Kulkarni S. HER2+ breast cancer: review of biologic relevance and optimal use of diagnostic tools. Am J Clin Pathol. 2008;129(2):263–73.PubMedCrossRef Hicks DG, Kulkarni S. HER2+ breast cancer: review of biologic relevance and optimal use of diagnostic tools. Am J Clin Pathol. 2008;129(2):263–73.PubMedCrossRef
9.
go back to reference Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.PubMedCrossRef Wolff AC, Hammond ME, Schwartz JN, et al. American Society of Clinical Oncology; College of American Pathologists. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.PubMedCrossRef
10.
go back to reference Hicks DG, Kulkarni S. Trastuzumab as adjuvant therapy for early breast cancer: the importance of accurate human epidermal growth factor receptor 2 testing. Arch Pathol Lab Med. 2008;132(6):1008–15.PubMed Hicks DG, Kulkarni S. Trastuzumab as adjuvant therapy for early breast cancer: the importance of accurate human epidermal growth factor receptor 2 testing. Arch Pathol Lab Med. 2008;132(6):1008–15.PubMed
11.
go back to reference Baselga J, Cortés J, Kim SB, et al. CLEOPATRA study group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.PubMedCrossRef Baselga J, Cortés J, Kim SB, et al. CLEOPATRA study group. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2012;366(2):109–19.PubMedCrossRef
12.
go back to reference Verma S, Miles D, Gianni L, et al. EMILIA study group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.PubMedPubMedCentralCrossRef Verma S, Miles D, Gianni L, et al. EMILIA study group. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.PubMedPubMedCentralCrossRef
13.
go back to reference Hurvitz SA, Dirix L, Kocsis J, et al. Phase II randomized study of Trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2013;31(9):1157–63.PubMedCrossRef Hurvitz SA, Dirix L, Kocsis J, et al. Phase II randomized study of Trastuzumab emtansine versus trastuzumab plus docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J Clin Oncol. 2013;31(9):1157–63.PubMedCrossRef
14.
go back to reference Hicks DG, Whitney-Miller C. HER2 testing in gastric and gastroesophageal junction cancers: a new therapeutic target and diagnostic challenge. Appl Immunohistochem Mol Morphol. 2011;19(6):506–8.PubMedCrossRef Hicks DG, Whitney-Miller C. HER2 testing in gastric and gastroesophageal junction cancers: a new therapeutic target and diagnostic challenge. Appl Immunohistochem Mol Morphol. 2011;19(6):506–8.PubMedCrossRef
15.
go back to reference Wolff AC, Hammond ME, Hicks DG, et al. American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/ College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.PubMedCrossRef Wolff AC, Hammond ME, Hicks DG, et al. American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/ College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997–4013.PubMedCrossRef
16.
go back to reference Scaltriti M, Nuciforo P, Bradbury I, et al. High HER2 expression correlates with response to the combination of lapatinib and trastuzumab. Clin Cancer Res. 2015;21(3):569–76.PubMedCrossRef Scaltriti M, Nuciforo P, Bradbury I, et al. High HER2 expression correlates with response to the combination of lapatinib and trastuzumab. Clin Cancer Res. 2015;21(3):569–76.PubMedCrossRef
17.
go back to reference Goldstein NS, Hewitt SM, Taylor CR, et al. Members of ad-hoc committee on immunohistochemistry standardization. Recommendations for improved standardization of immunohistochemistry. Appl Immunohistochem Mol Morphol. 2007;15(2):124–33.PubMedCrossRef Goldstein NS, Hewitt SM, Taylor CR, et al. Members of ad-hoc committee on immunohistochemistry standardization. Recommendations for improved standardization of immunohistochemistry. Appl Immunohistochem Mol Morphol. 2007;15(2):124–33.PubMedCrossRef
18.
go back to reference Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol. 2005;36(3):250–61.PubMedCrossRef Hicks DG, Tubbs RR. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: a technical review with interpretive guidelines. Hum Pathol. 2005;36(3):250–61.PubMedCrossRef
19.
go back to reference Harigopal M, Barlow WE, Tedeschi G, et al. Multiplexed assessment of the southwest oncology group-directed intergroup breast Cancer trial S9313 by AQUA shows that both high and low levels of HER2 are associated with poor outcome. Am J Pathol. 2010;176(4):1639–47.PubMedPubMedCentralCrossRef Harigopal M, Barlow WE, Tedeschi G, et al. Multiplexed assessment of the southwest oncology group-directed intergroup breast Cancer trial S9313 by AQUA shows that both high and low levels of HER2 are associated with poor outcome. Am J Pathol. 2010;176(4):1639–47.PubMedPubMedCentralCrossRef
20.
go back to reference Huang W, Reinholz M, Weidler J, et al. Comparison of central HER2 testing with quantitative total HER2 expression and HER2 homodimer measurements using a novel proximity-based assay. Am J Clin Pathol. 2010;134(2):303–11.PubMedCrossRef Huang W, Reinholz M, Weidler J, et al. Comparison of central HER2 testing with quantitative total HER2 expression and HER2 homodimer measurements using a novel proximity-based assay. Am J Clin Pathol. 2010;134(2):303–11.PubMedCrossRef
21.
go back to reference Larson JS, Goodman LJ, Tan Y, et al. Analytical validation of a highly quantitative, sensitive, accurate, and reproducible assay (HERmark) for the measurement of HER2 Total protein and HER2 homodimers in FFPE breast Cancer tumor specimens. Patholog Res Int. 2010;814176. Larson JS, Goodman LJ, Tan Y, et al. Analytical validation of a highly quantitative, sensitive, accurate, and reproducible assay (HERmark) for the measurement of HER2 Total protein and HER2 homodimers in FFPE breast Cancer tumor specimens. Patholog Res Int. 2010;814176.
22.
go back to reference Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51(12):2415–8.PubMedCrossRef Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem. 2005;51(12):2415–8.PubMedCrossRef
23.
go back to reference Van Weemen BK, Schuurs AH. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15(3):232–6.PubMedCrossRef Van Weemen BK, Schuurs AH. Immunoassay using antigen-enzyme conjugates. FEBS Lett. 1971;15(3):232–6.PubMedCrossRef
24.
go back to reference Opstal-van Winden AW, Vermeulen RC, Peeters PH, et al. Early diagnostic protein biomarkers for breast cancer: how far have we come? Breast Cancer Res Treat. 2012;134(1):1–12.PubMedCrossRef Opstal-van Winden AW, Vermeulen RC, Peeters PH, et al. Early diagnostic protein biomarkers for breast cancer: how far have we come? Breast Cancer Res Treat. 2012;134(1):1–12.PubMedCrossRef
25.
go back to reference Lavabre-Bertrand T, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression. Cytometry. 1994;18(4):209–17.PubMedCrossRef Lavabre-Bertrand T, Janossy G, Ivory K, et al. Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression. Cytometry. 1994;18(4):209–17.PubMedCrossRef
26.
go back to reference Gonda K, Watanabe M, Tada H, et al. Quantitative diagnostic imaging of cancer tissues by using phosphor-integrated dots with ultra-high brightness. Sci Rep. 2017;7(1):7509.PubMedPubMedCentralCrossRef Gonda K, Watanabe M, Tada H, et al. Quantitative diagnostic imaging of cancer tissues by using phosphor-integrated dots with ultra-high brightness. Sci Rep. 2017;7(1):7509.PubMedPubMedCentralCrossRef
27.
go back to reference Jorgensen JT, Møller S, Rasmussen BB, et al. High concordance between two companion diagnostics tests: a concordance study between the HercepTest and the HER2 ISH pharmDx kit. Am J Clin Pathol. 2011;136(1):145–51.PubMedCrossRef Jorgensen JT, Møller S, Rasmussen BB, et al. High concordance between two companion diagnostics tests: a concordance study between the HercepTest and the HER2 ISH pharmDx kit. Am J Clin Pathol. 2011;136(1):145–51.PubMedCrossRef
28.
go back to reference Symmans WF, Peintinger F, Hatzis C, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–22.PubMedCrossRef Symmans WF, Peintinger F, Hatzis C, et al. Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol. 2007;25(28):4414–22.PubMedCrossRef
29.
go back to reference Symmans WF, Wei C, Gould R, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual Cancer burden and breast Cancer subtype. J Clin Oncol. 2017;35(10):1049–60.PubMedPubMedCentralCrossRef Symmans WF, Wei C, Gould R, et al. Long-term prognostic risk after neoadjuvant chemotherapy associated with residual Cancer burden and breast Cancer subtype. J Clin Oncol. 2017;35(10):1049–60.PubMedPubMedCentralCrossRef
30.
go back to reference Jensen K, Krusenstjerna-Hafstrøm R, Lohse J, et al. A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. Mod Pathol. 2017;30(2):180–93.PubMedCrossRef Jensen K, Krusenstjerna-Hafstrøm R, Lohse J, et al. A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. Mod Pathol. 2017;30(2):180–93.PubMedCrossRef
31.
go back to reference Downs-Kelly E, Yoder BJ, Stoler M, et al. The influence of polysomy 17 on HER2 gene and protein expression in adenocarcinoma of the breast: a fluorescent in situ hybridization, immunohistochemical, and isotopic mRNA in situ hybridization study. Am J Surg Pathol. 2005;29(9):1221–7.PubMedCrossRef Downs-Kelly E, Yoder BJ, Stoler M, et al. The influence of polysomy 17 on HER2 gene and protein expression in adenocarcinoma of the breast: a fluorescent in situ hybridization, immunohistochemical, and isotopic mRNA in situ hybridization study. Am J Surg Pathol. 2005;29(9):1221–7.PubMedCrossRef
32.
go back to reference Pauletti G, Godolphin W, Press MF, et al. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene. 1996;13(1):63–72.PubMed Pauletti G, Godolphin W, Press MF, et al. Detection and quantitation of HER-2/neu gene amplification in human breast cancer archival material using fluorescence in situ hybridization. Oncogene. 1996;13(1):63–72.PubMed
33.
go back to reference Lipton A, Köstler WJ, Leitzel K, et al. Trastuzumab response biomarker group. Quantitative HER2 protein levels predict outcome in fluorescence in situ hybridization-positive patients with metastatic breast cancer treated with trastuzumab. Cancer. 2010;116(22):5168–78.PubMedCrossRef Lipton A, Köstler WJ, Leitzel K, et al. Trastuzumab response biomarker group. Quantitative HER2 protein levels predict outcome in fluorescence in situ hybridization-positive patients with metastatic breast cancer treated with trastuzumab. Cancer. 2010;116(22):5168–78.PubMedCrossRef
34.
go back to reference Benz CC, O'Hagan RC, Richter B, et al. HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene. 1997;15(13):1513–25.PubMedCrossRef Benz CC, O'Hagan RC, Richter B, et al. HER2/Neu and the Ets transcription activator PEA3 are coordinately upregulated in human breast cancer. Oncogene. 1997;15(13):1513–25.PubMedCrossRef
35.
go back to reference Wang SC, Hung MC. HER2 overexpression and cancer targeting. Semin Oncol. 2001;28(5 Suppl 16):115–24.PubMedCrossRef Wang SC, Hung MC. HER2 overexpression and cancer targeting. Semin Oncol. 2001;28(5 Suppl 16):115–24.PubMedCrossRef
36.
go back to reference Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.PubMedCrossRef Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–72.PubMedCrossRef
37.
go back to reference Miyashita M, Gonda K, Tada H, et al. Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging. Cancer Med. 2016;5(10):2813–24.PubMedPubMedCentralCrossRef Miyashita M, Gonda K, Tada H, et al. Quantitative diagnosis of HER2 protein expressing breast cancer by single-particle quantum dot imaging. Cancer Med. 2016;5(10):2813–24.PubMedPubMedCentralCrossRef
38.
go back to reference Nuciforo P, Thyparambil S, Aura C, et al. High HER2 protein levels correlate with increased survival in breast cancer patients treated with anti-HER2 therapy. Mol Oncol. 2016;10(1):138–47.PubMedCrossRef Nuciforo P, Thyparambil S, Aura C, et al. High HER2 protein levels correlate with increased survival in breast cancer patients treated with anti-HER2 therapy. Mol Oncol. 2016;10(1):138–47.PubMedCrossRef
39.
go back to reference Cheng H, Bai Y, Sikov W, et al. Quantitative measurements of HER2 and phospho-HER2 expression: correlation with pathologic response to neoadjuvant chemotherapy and trastuzumab. BMC Cancer. 2014;14:326.PubMedPubMedCentralCrossRef Cheng H, Bai Y, Sikov W, et al. Quantitative measurements of HER2 and phospho-HER2 expression: correlation with pathologic response to neoadjuvant chemotherapy and trastuzumab. BMC Cancer. 2014;14:326.PubMedPubMedCentralCrossRef
40.
go back to reference Bianchini G, Kiermaier A, Bianchi GV, et al. Biomarker analysis of the NeoSphere study: pertuzumab, trastuzumab, and docetaxel versus trastuzumab plus docetaxel, pertuzumab plus trastuzumab, or pertuzumab plus docetaxel for the neoadjuvant treatment of HER2-positive breast cancer. Breast Cancer Res. 2017;19(1):16.PubMedPubMedCentralCrossRef Bianchini G, Kiermaier A, Bianchi GV, et al. Biomarker analysis of the NeoSphere study: pertuzumab, trastuzumab, and docetaxel versus trastuzumab plus docetaxel, pertuzumab plus trastuzumab, or pertuzumab plus docetaxel for the neoadjuvant treatment of HER2-positive breast cancer. Breast Cancer Res. 2017;19(1):16.PubMedPubMedCentralCrossRef
41.
go back to reference Singer CF, Tan YY, Fitzal F, et al. Austrian Breast and Colorectal Cancer Study Group. Pathological Complete Response to Neoadjuvant Trastuzumab Is Dependent on HER2/CEP17 Ratio in HER2-Amplified Early Breast Cancer. Clin Cancer Res. 2017. Singer CF, Tan YY, Fitzal F, et al. Austrian Breast and Colorectal Cancer Study Group. Pathological Complete Response to Neoadjuvant Trastuzumab Is Dependent on HER2/CEP17 Ratio in HER2-Amplified Early Breast Cancer. Clin Cancer Res. 2017.
42.
go back to reference Solinas C, Ceppi M, Lambertini M, et al. Tumor-infiltrating lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: a meta-analysis of randomized controlled trials. Cancer Treat Rev. 2017;57:8–15.PubMedCrossRef Solinas C, Ceppi M, Lambertini M, et al. Tumor-infiltrating lymphocytes in patients with HER2-positive breast cancer treated with neoadjuvant chemotherapy plus trastuzumab, lapatinib or their combination: a meta-analysis of randomized controlled trials. Cancer Treat Rev. 2017;57:8–15.PubMedCrossRef
43.
go back to reference Lesurf R, Griffith OL, Griffith M, et al. Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy-results from the ACOSOG Z1041 (Alliance) trial. Ann Oncol. 2017;28(5):1070–7.PubMedPubMedCentralCrossRef Lesurf R, Griffith OL, Griffith M, et al. Genomic characterization of HER2-positive breast cancer and response to neoadjuvant trastuzumab and chemotherapy-results from the ACOSOG Z1041 (Alliance) trial. Ann Oncol. 2017;28(5):1070–7.PubMedPubMedCentralCrossRef
44.
go back to reference Yardley DA, Kaufman PA, Huang W, et al. Quantitative measurement of HER2 expression in breast cancers: comparison with 'real-world' routine HER2 testing in a multicenter collaborative biomarker study and correlation with overall survival. Breast Cancer Res. 2015;17:41.PubMedPubMedCentralCrossRef Yardley DA, Kaufman PA, Huang W, et al. Quantitative measurement of HER2 expression in breast cancers: comparison with 'real-world' routine HER2 testing in a multicenter collaborative biomarker study and correlation with overall survival. Breast Cancer Res. 2015;17:41.PubMedPubMedCentralCrossRef
Metadata
Title
A novel detection methodology for HER2 protein quantitation in formalin-fixed, paraffin embedded clinical samples using fluorescent nanoparticles: an analytical and clinical validation study
Authors
David G. Hicks
Brandon Buscaglia
Hideki Goda
Loralee McMahon
Takako Natori
Bradley Turner
Armen Soukiazian
Hisatake Okada
Yasushi Nakano
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-5172-1

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine