Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Study protocol

A prospective clinical and biological database for pancreatic adenocarcinoma: the BACAP cohort

Authors: Cindy Canivet, Sophie Gourgou-Bourgade, Bertrand Napoléon, Laurent Palazzo, Nicolas Flori, Pierre Guibert, Guillaume Piessen, Dominique Farges-Bancel, Jean-François Seitz, Eric Assenat, Véronique Vendrely, Stéphanie Truant, Geoffroy Vanbiervliet, Philippe Berthelémy, Stéphane Garcia, Anne Gomez-Brouchet, Louis Buscail, Barbara Bournet, The BACAP Consortium

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

The prognosis for pancreatic cancer remains poor despite diagnostic advances and treatments with new chemotherapeutic regimens. The five year survival rate remains below 3%. Consequently, there is an urgent need for new treatments to significantly improve the prognosis. In addition, there is a big gap in terms of the screening, early diagnosis and prevention of pancreatic cancer the incidence of which is increasing dramatically.

Methods

Design: the BACAP cohort is a prospective multicenter pancreatic cancer cohort (pancreatic ductal carcinoma) with clinical and multiple biological samples; Participating centers: 15 French academic and private hospitals; Study Population: any cytologically and/or histologically proven pancreatic carcinoma regardless of the stage (resectable, borderline, locally advanced or metastatic) or treatment (surgery, palliative chemotherapy, best supportive care). At least 1500 patients will be included. Clinical data collected include: disease presentation, epidemiological and social factors, baseline biology, radiology, endoscopic ultrasound, staging, pathology, treatments, follow-up (including biological and radiological), and survival. All these data are collected and stored through an e-observation system at a centralized data center. Biological samples and derived products (i.e. before any treatment): blood, saliva, endoscopic ultrasound-guided fine needle aspiration materials from the primary tumor, fine needle biopsy of metastases and surgically resected tissue. DNA and RNA are extracted from fine needle aspiration materials and are quantified and characterized for quality. Whole blood, plasma and serum are isolated from blood samples. Frozen tissues were specifically allocated to the cohort. All derived products and saliva are stored at − 80 °C. Main end-points: i) to centralize clinical data together with multiple biological samples that are harmonized in terms of sampling, the post sampling process and storage; ii) to identify new molecular markers for the diagnosis, prognosis and possibly the predictive response to pancreatic cancer surgery and or chemotherapy.

Discussion

The BACAP cohort is a unique prospective biological clinical database that provides the opportunity to identify correlations between the presence/expression of a broad panel of biomarkers (DNA, RNA, miRNA, proteins, etc.), epidemiological and social data, various clinical situations, various stages and the differentiation of the tumor, treatments and survival.

Trial registration

ClinicalTrials.gov Identifier: NCT02818829. Registration date: June 30, 2016.
Literature
1.
go back to reference Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.CrossRef Ryan DP, Hong TS, Bardeesy N. Pancreatic adenocarcinoma. N Engl J Med. 2014;371:1039–49.CrossRef
2.
go back to reference Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRef Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRef
3.
go back to reference Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2014. Ann Oncol. 2014;25:1650–6.CrossRef Malvezzi M, Bertuccio P, Levi F, La Vecchia C, Negri E. European cancer mortality predictions for the year 2014. Ann Oncol. 2014;25:1650–6.CrossRef
4.
go back to reference Bouvier AM, Uhry Z, Jooste V, Drouillard A, Drouillard A, Remontet L, Launoy G, et al. Focus on an unusual rise in pancreatic cancer incidence in France. Int J Epidemiol. 2017;46:1764–72.CrossRef Bouvier AM, Uhry Z, Jooste V, Drouillard A, Drouillard A, Remontet L, Launoy G, et al. Focus on an unusual rise in pancreatic cancer incidence in France. Int J Epidemiol. 2017;46:1764–72.CrossRef
5.
go back to reference Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44:186–98.CrossRef Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44:186–98.CrossRef
6.
go back to reference Song M, Giovannucci E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol. 2016;2:1154–61.CrossRef Song M, Giovannucci E. Preventable incidence and mortality of carcinoma associated with lifestyle factors among white adults in the United States. JAMA Oncol. 2016;2:1154–61.CrossRef
7.
go back to reference Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–83.CrossRef Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–83.CrossRef
8.
go back to reference Anderson MA, Zolotarevsky E, Cooper KL, Sherman S, Shats O, Whitcomb DC, et al. Alcohol and tobacco lower the age of presentation in sporadic pancreatic cancer in a dose-dependent manner: a multicenter study. Am J Gastroenterol. 2012;107:1730–9.CrossRef Anderson MA, Zolotarevsky E, Cooper KL, Sherman S, Shats O, Whitcomb DC, et al. Alcohol and tobacco lower the age of presentation in sporadic pancreatic cancer in a dose-dependent manner: a multicenter study. Am J Gastroenterol. 2012;107:1730–9.CrossRef
9.
go back to reference Paluszkiewicz P, Smolińska K, Dębińska I, Turski WA. Main dietary compounds and pancreatic cancer risk. The quantitative analysis of case-control and cohort studies. Cancer Epidemiol. 2012;36:60–7.CrossRef Paluszkiewicz P, Smolińska K, Dębińska I, Turski WA. Main dietary compounds and pancreatic cancer risk. The quantitative analysis of case-control and cohort studies. Cancer Epidemiol. 2012;36:60–7.CrossRef
10.
go back to reference Buscail L, Faure P, Bournet B, Selves J, Escourrou J. Interventional endoscopic ultrasound in pancreatic diseases. Pancreatology. 2006;6:7–16.CrossRef Buscail L, Faure P, Bournet B, Selves J, Escourrou J. Interventional endoscopic ultrasound in pancreatic diseases. Pancreatology. 2006;6:7–16.CrossRef
11.
go back to reference Banafea O, Mghanga FP, Zhao J, Zhao R, Zhu L, et al. Endoscopic ultrasonography with fine-needle aspiration for histological diagnosis of solid pancreatic masses: a meta-analysis of diagnostic accuracy studies. BMC Gastroenterol. 2016;16:108.CrossRef Banafea O, Mghanga FP, Zhao J, Zhao R, Zhu L, et al. Endoscopic ultrasonography with fine-needle aspiration for histological diagnosis of solid pancreatic masses: a meta-analysis of diagnostic accuracy studies. BMC Gastroenterol. 2016;16:108.CrossRef
12.
go back to reference Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano M, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.CrossRef Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano M, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.CrossRef
13.
go back to reference Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRef Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRef
14.
go back to reference Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRef
15.
go back to reference Bournet B, Souque A, Senesse P, Assenat E, Barthet M, Lesavre N, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with KRAS mutation assay to distinguish pancreatic cancer from pseudotumoral chronic pancreatitis. Endoscopy. 2009;41:552–7.CrossRef Bournet B, Souque A, Senesse P, Assenat E, Barthet M, Lesavre N, et al. Endoscopic ultrasound-guided fine-needle aspiration biopsy coupled with KRAS mutation assay to distinguish pancreatic cancer from pseudotumoral chronic pancreatitis. Endoscopy. 2009;41:552–7.CrossRef
16.
go back to reference Bournet B, Muscari F, Buscail C, Assenat E, Barthet M, Hammel P, et al. KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma. Clin Transl Gastroenterol. 2016;7:e157.CrossRef Bournet B, Muscari F, Buscail C, Assenat E, Barthet M, Hammel P, et al. KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma. Clin Transl Gastroenterol. 2016;7:e157.CrossRef
17.
go back to reference Sonntag KC, Tejada G, Subburaju S, Berretta S, Benes FM, Woo TU. Limited predictability of postmortem human brain tissue quality by RNA integrity numbers. J Neurochem. 2016;138:53–9.CrossRef Sonntag KC, Tejada G, Subburaju S, Berretta S, Benes FM, Woo TU. Limited predictability of postmortem human brain tissue quality by RNA integrity numbers. J Neurochem. 2016;138:53–9.CrossRef
18.
go back to reference Davila JI, Fadra NM, Wang X, McDonald AM, Nair AA, Crusan BR, et al. Impact of RNA degradation on fusion detection by RNA-seq. BMC Genomics. 2016;17:814.CrossRef Davila JI, Fadra NM, Wang X, McDonald AM, Nair AA, Crusan BR, et al. Impact of RNA degradation on fusion detection by RNA-seq. BMC Genomics. 2016;17:814.CrossRef
19.
go back to reference Humeau M, Vignolle-Vidoni A, Sicard F, Martins F, Bournet B, Buscail L, et al. Salivary MicroRNA in pancreatic Cancer patients. PLoS One. 2015;10:e0130996.CrossRef Humeau M, Vignolle-Vidoni A, Sicard F, Martins F, Bournet B, Buscail L, et al. Salivary MicroRNA in pancreatic Cancer patients. PLoS One. 2015;10:e0130996.CrossRef
20.
go back to reference Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405.CrossRef Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature. 2012;491:399–405.CrossRef
21.
go back to reference Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.CrossRef Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.CrossRef
22.
go back to reference Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.CrossRef Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.CrossRef
23.
go back to reference Demeure MJ, Sielaff T, Koep L, Prinz R, Moser J, Zeh H, et al. Multi-institutional tumor banking – lessons learned from a pancreatic cancer biospecimen repository. Pancreas. 2010;7:949–54.CrossRef Demeure MJ, Sielaff T, Koep L, Prinz R, Moser J, Zeh H, et al. Multi-institutional tumor banking – lessons learned from a pancreatic cancer biospecimen repository. Pancreas. 2010;7:949–54.CrossRef
Metadata
Title
A prospective clinical and biological database for pancreatic adenocarcinoma: the BACAP cohort
Authors
Cindy Canivet
Sophie Gourgou-Bourgade
Bertrand Napoléon
Laurent Palazzo
Nicolas Flori
Pierre Guibert
Guillaume Piessen
Dominique Farges-Bancel
Jean-François Seitz
Eric Assenat
Véronique Vendrely
Stéphanie Truant
Geoffroy Vanbiervliet
Philippe Berthelémy
Stéphane Garcia
Anne Gomez-Brouchet
Louis Buscail
Barbara Bournet
The BACAP Consortium
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4906-4

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine