Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Risk factors for erlotinib-induced hepatotoxicity: a retrospective follow-up study

Authors: Min Kyoung Kim, Jeong Yee, Yoon Sook Cho, Hong Won Jang, Ji Min Han, Hye Sun Gwak

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Erlotinib is a drug used for the treatment of non-small cell lung cancer (NSCLC) and pancreatic cancer. Severe hepatotoxicity was observed in 4% to 31% of patients receiving erlotinib treatment prompting delay or termination of treatment. Only a few factors related to hepatotoxicity of erlotinib have been reported. No study has investigated the role of concomitant medications and erlotinib-induced hepatotoxicity. The aim of this study was to investigate the association between erlotinib-induced hepatotoxicity and various factors including concomitant medications in patients with NSCLC and pancreatic cancer.

Methods

From January 2014 to June 2017, a retrospective study was conducted in patients with NSCLC and pancreatic cancer, who were treated with erlotinib. Various data were reviewed, including sex, age, body weight, height, body surface area (BSA), underlying disease, Eastern Cooperative Oncology Group (ECOG) Performance Status (PS), smoking history, erlotinib dose, EGFR mutation, and concomitant drugs.

Results

The incidence of grade 2 or higher hepatotoxicity in the study group of patients was 17.2%. Multivariate analysis showed a 2.7-fold increase in hepatotoxicity with the concomitant use of CYP3A4 inducers. In NSCLC patients, co-administration of H2-antagonist/PPI increased hepatotoxicity 3.5-fold. Among the demographic factors, liver metastasis and age ≥ 65 years were significant risk factors in all study patients and NSCLC patients, respectively; the attributable risks for liver metastasis and age were 46.3% and 71.8%, respectively. Subgroup analysis using pancreatic cancer patients yielded marginally significant results with CYP3A4 inducers and erlotinib-induced hepatotoxicity. Liver metastasis and CYP3A4 inducers also shortened time to hepatotoxicity 2.1 and 2.3-fold, respectively.

Conclusions

Our study showed that concomitant use of CYP3A4 inducers and H2-antagonist/PPI, liver metastasis, and age ≥ 65 were associated with erlotinib-induced hepatotoxicity. Thus, close monitoring of liver function is recommended, especially in patients using CYP3A4 inducers and anti-acid secreting agents.
Literature
1.
go back to reference Korea Central Cancer Registry, National Cancer Center. Annual report of cancer statistics in Korea in 2014. Sejongsi: Ministry of Health and Welfare; 2016. Korea Central Cancer Registry, National Cancer Center. Annual report of cancer statistics in Korea in 2014. Sejongsi: Ministry of Health and Welfare; 2016.
2.
go back to reference Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.CrossRef Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.CrossRef
3.
go back to reference Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada clinical trials group. J Clin Oncol. 2007;25:1960–6.CrossRef Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada clinical trials group. J Clin Oncol. 2007;25:1960–6.CrossRef
4.
go back to reference Shepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non–small-cell lung cancer. N Engl J Med. 2005;353:123–32.CrossRef Shepherd FA, Pereira JR, Ciuleanu T, et al. Erlotinib in previously treated non–small-cell lung cancer. N Engl J Med. 2005;353:123–32.CrossRef
5.
go back to reference Zhou C, Wu Y-L, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–42.CrossRef Zhou C, Wu Y-L, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 2011;12:735–42.CrossRef
7.
go back to reference Li J, Zhao M, He P, et al. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007;13:3731–7.CrossRef Li J, Zhao M, He P, et al. Differential metabolism of gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res. 2007;13:3731–7.CrossRef
8.
go back to reference Chen J, Gu R, Wan Q, et al. Gefitinib-induced hepatotoxicity in patients treated for non-small cell lung cancer. Onkologie. 2012;35:509–13.PubMed Chen J, Gu R, Wan Q, et al. Gefitinib-induced hepatotoxicity in patients treated for non-small cell lung cancer. Onkologie. 2012;35:509–13.PubMed
9.
go back to reference Hamilton M, Wolf JL, Drolet DW, et al. The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects. Cancer Chemother Pharmacol. 2014;73:613–21.CrossRef Hamilton M, Wolf JL, Drolet DW, et al. The effect of rifampicin, a prototypical CYP3A4 inducer, on erlotinib pharmacokinetics in healthy subjects. Cancer Chemother Pharmacol. 2014;73:613–21.CrossRef
10.
go back to reference Li X, Kamenecka TM, Cameron MD. Cytochrome P450-mediated bioactivation of the epidermal growth factor receptor inhibitor erlotinib to a reactive electrophile. Drug Metab Dispos. 2010;38:1238–45.CrossRef Li X, Kamenecka TM, Cameron MD. Cytochrome P450-mediated bioactivation of the epidermal growth factor receptor inhibitor erlotinib to a reactive electrophile. Drug Metab Dispos. 2010;38:1238–45.CrossRef
11.
go back to reference Teng WC, Oh JW, New LS, et al. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol. 2010;78:693–703.CrossRef Teng WC, Oh JW, New LS, et al. Mechanism-based inactivation of cytochrome P450 3A4 by lapatinib. Mol Pharmacol. 2010;78:693–703.CrossRef
12.
go back to reference Li X, Kamenecka TM, Cameron MD. Bioactivation of the epidermal growth factor receptor inhibitor gefitinib: implications for pulmonary and hepatic toxicities. Chem Res Toxicol. 2009;22:1736–42.CrossRef Li X, Kamenecka TM, Cameron MD. Bioactivation of the epidermal growth factor receptor inhibitor gefitinib: implications for pulmonary and hepatic toxicities. Chem Res Toxicol. 2009;22:1736–42.CrossRef
13.
go back to reference Cho S, Yee J, Kim JY, et al. Effects of concomitant medication use on Gefitinib-induced hepatotoxicity. J Clin Pharmacol. 2018;58:263–8.CrossRef Cho S, Yee J, Kim JY, et al. Effects of concomitant medication use on Gefitinib-induced hepatotoxicity. J Clin Pharmacol. 2018;58:263–8.CrossRef
14.
go back to reference Teo YL, Saetaew M, Chanthawong S, et al. Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence. Breast Cancer Res Treat. 2012;133:703–11.CrossRef Teo YL, Saetaew M, Chanthawong S, et al. Effect of CYP3A4 inducer dexamethasone on hepatotoxicity of lapatinib: clinical and in vitro evidence. Breast Cancer Res Treat. 2012;133:703–11.CrossRef
15.
go back to reference King PD, Perry MC. Hepatotoxicity of chemotherapy. Oncologist. 2001;6:162–76.CrossRef King PD, Perry MC. Hepatotoxicity of chemotherapy. Oncologist. 2001;6:162–76.CrossRef
16.
go back to reference Wheatley-Price P, Ding K, Seymour L, et al. Erlotinib for advanced non–small-cell lung cancer in the elderly: an analysis of the national cancer institute of Canada clinical trials group study BR.21. J Clin Oncol. 2008;26:2350–7.CrossRef Wheatley-Price P, Ding K, Seymour L, et al. Erlotinib for advanced non–small-cell lung cancer in the elderly: an analysis of the national cancer institute of Canada clinical trials group study BR.21. J Clin Oncol. 2008;26:2350–7.CrossRef
17.
go back to reference Beretta GL, Cassinelli G, Pennati M, et al. Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem. 2017;142:271–89.CrossRef Beretta GL, Cassinelli G, Pennati M, et al. Overcoming ABC transporter-mediated multidrug resistance: the dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem. 2017;142:271–89.CrossRef
18.
go back to reference Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics. 2008;9:105–27.CrossRef Sharom FJ. ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics. 2008;9:105–27.CrossRef
19.
go back to reference Tamura M, Kondo M, Horio M, et al. Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and erlotinib toxicity. Nagoya J Med Sci. 2012;74:133–40.PubMedPubMedCentral Tamura M, Kondo M, Horio M, et al. Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and erlotinib toxicity. Nagoya J Med Sci. 2012;74:133–40.PubMedPubMedCentral
20.
go back to reference Lemos C, Giovannetti E, Zucali PA, et al. Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of erlotinib in non-small-cell lung cancer patients. Pharmacogenomics. 2011;12:159–70.CrossRef Lemos C, Giovannetti E, Zucali PA, et al. Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of erlotinib in non-small-cell lung cancer patients. Pharmacogenomics. 2011;12:159–70.CrossRef
Metadata
Title
Risk factors for erlotinib-induced hepatotoxicity: a retrospective follow-up study
Authors
Min Kyoung Kim
Jeong Yee
Yoon Sook Cho
Hong Won Jang
Ji Min Han
Hye Sun Gwak
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4891-7

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine