Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

A similar effect of P16 hydroxymethylation and true-methylation on the prediction of malignant transformation of oral epithelial dysplasia: observation from a prospective study

Authors: Hongwei Liu, Zhaojun Liu, Xue-wei Liu, Si Xu, Lei Wang, Yang Liu, Jing Zhou, Liankun Gu, Yan Gao, Xiao-yong Liu, Huidong Shi, Zheng Sun, Dajun Deng

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Total P16 methylation (P16M), including P16 hydroxymethylation (P16H) and true-P16M, correlates with malignant transformation of oral epithelial dysplasia (OED). Both true-P16M and P16H are early events in carcinogenesis. The aim of this study is to prospectively determine if discrimination of true-P16M from P16H is necessary for prediction of cancer development from OEDs.

Methods

Patients (n = 265) with mild or moderate OED were recruited into the double blind two-center cohort. Total-P16M and P16H were analyzed using the 115-bp MethyLight, TET-assisted bisulfite (TAB) methylation-specific PCR (MSP), and TAB-sequencing. Total-P16M-positive and P16H-negative samples were defined as true-P16M-positive. Progression of OEDs was monitored for a minimum 24 months follow-up period.

Results

P16H was detected in 23 of 73 (31.5%) total-P16M-positive OEDs. Follow-up information was obtained from 247 patients with an ultimate compliance rate of 93.2%. OED-derived squamous cell carcinomas were observed in 13.0% (32/247) patients during follow-up (median, 41.0 months). The cancer progression rate for total-P16M-positive patients was significantly increased when compared to total-P16M-negative patients [23.3% vs 8.6%; adjusted odds ratio = 2.67 (95% CI: 1.19–5.99)]. However, the cancer progression rates were similar between P16H- and true-P16M-positive OEDs [26.1% (6/23) vs 22.0% (11/50); odds ratio = 0.80 (95% CI: 0.22–2.92)]. The cancer-free survival was also similar for these patients.

Conclusion

P16H and true-P16M are similar biomarkers for determining malignant potential of OEDs. Discrimination of P16H from true-P16M, at least in OED, may be not necessary in clinical applications.

Trial registration

This study is registered prospectively in the U.S. National Institutes of Health Clinical Trials Protocol Registration System (trial number NCT02967120, available at https://​ClinicalTrials.​gov/​ct2/​show/​NCT02967120).
Appendix
Available only for authorised users
Literature
1.
go back to reference Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.CrossRef Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324:930–5.CrossRef
2.
go back to reference Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30.CrossRef Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science. 2009;324:929–30.CrossRef
3.
go back to reference He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.CrossRef He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–7.CrossRef
4.
go back to reference Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.CrossRef Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–3.CrossRef
5.
go back to reference Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10.CrossRef Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, Iqbal K, Shi YG, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477:606–10.CrossRef
6.
go back to reference Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011;473:343–8.CrossRef Williams K, Christensen J, Pedersen MT, Johansen JV, Cloos PA, Rappsilber J, Helin K. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature. 2011;473:343–8.CrossRef
7.
go back to reference Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339:448–52.CrossRef Hackett JA, Sengupta R, Zylicz JJ, Murakami K, Lee C, Down TA, Surani MA. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science. 2013;339:448–52.CrossRef
8.
go back to reference Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–7.CrossRef Pastor WA, Pape UJ, Huang Y, Henderson HR, Lister R, Ko M, McLoughlin EM, Brudno Y, Mahapatra S, Kapranov P, Tahiliani M, Daley GQ, et al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature. 2011;473:394–7.CrossRef
9.
go back to reference Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011;473:398–402.CrossRef Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, Marques CJ, Andrews S, Reik W. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature. 2011;473:398–402.CrossRef
10.
go back to reference Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29:68–72.CrossRef Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol. 2011;29:68–72.CrossRef
11.
go back to reference Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, Min JH, Jin P, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149:1368–80.CrossRef Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, Min JH, Jin P, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149:1368–80.CrossRef
12.
go back to reference Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D. 5' CPG island methylation is associated with transcriptional silencing of the tumor-suppressor P16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92.CrossRef Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D. 5' CPG island methylation is associated with transcriptional silencing of the tumor-suppressor P16/CDKN2/MTS1 in human cancers. Nat Med. 1995;1:686–92.CrossRef
13.
go back to reference Herman JG, Merlo A, Mao L, Lapidus RG, Issa JPJ, Davidson NE, Sidransky D, Baylin SB. Inactivation of the Cdkn2/P16/Mts1 gene is frequently associated with aberrant Dna methylation in all common human cancers. Cancer Res. 1995;55:4525–30.PubMed Herman JG, Merlo A, Mao L, Lapidus RG, Issa JPJ, Davidson NE, Sidransky D, Baylin SB. Inactivation of the Cdkn2/P16/Mts1 gene is frequently associated with aberrant Dna methylation in all common human cancers. Cancer Res. 1995;55:4525–30.PubMed
14.
go back to reference Sun Y, Deng DJ, You WC, Bai H, Zhang L, Zhou J, Shen L, Ma JL, Xie YQ, Li JY. Methylation of p16 CpG islands associated with malignant transformation of gastric dysplasia in a population-based study. Clin Cancer Res. 2004;10:5087–93.CrossRef Sun Y, Deng DJ, You WC, Bai H, Zhang L, Zhou J, Shen L, Ma JL, Xie YQ, Li JY. Methylation of p16 CpG islands associated with malignant transformation of gastric dysplasia in a population-based study. Clin Cancer Res. 2004;10:5087–93.CrossRef
15.
go back to reference Belinsky SA, Liechty KC, Gentry FD, Wolf HJ, Rogers J, Vu K, Haney J, Kennedy TC, Hirsch FR, Miller Y, Franklin WA, Herman JG, et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 2006;66:3338–44.CrossRef Belinsky SA, Liechty KC, Gentry FD, Wolf HJ, Rogers J, Vu K, Haney J, Kennedy TC, Hirsch FR, Miller Y, Franklin WA, Herman JG, et al. Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res. 2006;66:3338–44.CrossRef
16.
go back to reference Hall GL, Shaw RJ, Field EA, Rogers SN, Sutton DN, Woolgar JA, Lowe D, Liloglou T, Field JK, Risk JM. p16 promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol Biomark Prev. 2008;17:2174–9.CrossRef Hall GL, Shaw RJ, Field EA, Rogers SN, Sutton DN, Woolgar JA, Lowe D, Liloglou T, Field JK, Risk JM. p16 promoter methylation is a potential predictor of malignant transformation in oral epithelial dysplasia. Cancer Epidemiol Biomark Prev. 2008;17:2174–9.CrossRef
17.
go back to reference Cao J, Zhou J, Gao Y, Gu L, Meng H, Liu H, Deng D. Methylation of p16 CpG Island associated with malignant progression of oral epithelial dysplasia: a prospective cohort study. Clin Cancer Res. 2009;15:5178–83.CrossRef Cao J, Zhou J, Gao Y, Gu L, Meng H, Liu H, Deng D. Methylation of p16 CpG Island associated with malignant progression of oral epithelial dysplasia: a prospective cohort study. Clin Cancer Res. 2009;15:5178–83.CrossRef
18.
go back to reference Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, Olaru A, Paun B, Yang J, Kan T, Ito T, Hamilton J, et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 2009;69:4112–5.CrossRef Jin Z, Cheng Y, Gu W, Zheng Y, Sato F, Mori Y, Olaru A, Paun B, Yang J, Kan T, Ito T, Hamilton J, et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 2009;69:4112–5.CrossRef
19.
go back to reference Liu HW, Liu XW, Dong GY, Zhou J, Liu Y, Gao Y, Liu XY, Gu LK, Sun Z, Deng DJ. P16 methylation as an early predictor for Cancer development from oral epithelial dysplasia: a double-blind multicentre prospective study. EBioMedicine. 2015;2:6. Liu HW, Liu XW, Dong GY, Zhou J, Liu Y, Gao Y, Liu XY, Gu LK, Sun Z, Deng DJ. P16 methylation as an early predictor for Cancer development from oral epithelial dysplasia: a double-blind multicentre prospective study. EBioMedicine. 2015;2:6.
20.
go back to reference Gao H, Zhang Y, Zhou J, Li Z, Ma JL, Liu WD, Deng DJ, You WC, Pan KF. Association between p16 methylation and malignant transformation of gastric dysplasia. Chin J Cancer Prev Treat. 2017;24:6. Gao H, Zhang Y, Zhou J, Li Z, Ma JL, Liu WD, Deng DJ, You WC, Pan KF. Association between p16 methylation and malignant transformation of gastric dysplasia. Chin J Cancer Prev Treat. 2017;24:6.
21.
go back to reference Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, Deng D. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 2015;16:252.CrossRef Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, Deng D. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 2015;16:252.CrossRef
22.
go back to reference Gan Y, Ma W, Wang X, Qiao J, Zhang B, Cui C, Liu Z, Deng D. Coordinated transcription of ANRIL and P16 genes is silenced by P16 DNA methylation. Chin J Cancer Res. 2018;30:93–103.CrossRef Gan Y, Ma W, Wang X, Qiao J, Zhang B, Cui C, Liu Z, Deng D. Coordinated transcription of ANRIL and P16 genes is silenced by P16 DNA methylation. Chin J Cancer Res. 2018;30:93–103.CrossRef
23.
go back to reference Qin SS, Li Q, Zhou J, Liu ZJ, Su N, Wilson J, Lu ZM, Deng DJ. Homeostatic maintenance of allele-specific p16 methylation in Cancer cells accompanied by dynamic focal methylation and Hydroxymethylation. PLoS One. 2014;9:E97785.CrossRef Qin SS, Li Q, Zhou J, Liu ZJ, Su N, Wilson J, Lu ZM, Deng DJ. Homeostatic maintenance of allele-specific p16 methylation in Cancer cells accompanied by dynamic focal methylation and Hydroxymethylation. PLoS One. 2014;9:E97785.CrossRef
24.
go back to reference Qin S, Zhang B, Tian W, Gu L, Lu Z, Deng D. Kaiso mainly locates in the nucleus in vivo and binds to methylated, but not hydroxymethylated DNA. Chin J Cancer Res. 2015;27:148–55.PubMedPubMedCentral Qin S, Zhang B, Tian W, Gu L, Lu Z, Deng D. Kaiso mainly locates in the nucleus in vivo and binds to methylated, but not hydroxymethylated DNA. Chin J Cancer Res. 2015;27:148–55.PubMedPubMedCentral
25.
go back to reference Zhou J, Cao J, Lu Z, Liu H, Deng D. A 115-bp MethyLight assay for detection of p16 (CDKN2A) methylation as a diagnostic biomarker in human tissues. Bmc Med Genet. 2011;12:67.CrossRef Zhou J, Cao J, Lu Z, Liu H, Deng D. A 115-bp MethyLight assay for detection of p16 (CDKN2A) methylation as a diagnostic biomarker in human tissues. Bmc Med Genet. 2011;12:67.CrossRef
26.
go back to reference Liu Z, Zhou J, Gu L, Deng D. Significant impact of amount of PCR input templates on various PCR-based DNA methylation analysis and countermeasure. Oncotarget. 2016;7:56447–55.PubMedPubMedCentral Liu Z, Zhou J, Gu L, Deng D. Significant impact of amount of PCR input templates on various PCR-based DNA methylation analysis and countermeasure. Oncotarget. 2016;7:56447–55.PubMedPubMedCentral
27.
go back to reference Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.CrossRef Herman JG, Graff JR, Myöhänen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996;93:9821–6.CrossRef
28.
go back to reference Deng DJ, Deng GR, Smith MF, Zhou J, Xin HJ, Powell SM, Lu YY. Simultaneous detection of CpG methylation and single nucleotide polymorphism by denaturing high performance liquid chromatography. Nucleic Acids Res. 2002;30:13E.CrossRef Deng DJ, Deng GR, Smith MF, Zhou J, Xin HJ, Powell SM, Lu YY. Simultaneous detection of CpG methylation and single nucleotide polymorphism by denaturing high performance liquid chromatography. Nucleic Acids Res. 2002;30:13E.CrossRef
29.
go back to reference Luo DY, Zhang BZ, Lv LB, Xiang SY, Liu YH, Ji JF, Deng DJ. Methylation of CpG islands of p16 associated with progression of primary gastric carcinomas. Lab Investig. 2006;86:591–8.CrossRef Luo DY, Zhang BZ, Lv LB, Xiang SY, Liu YH, Ji JF, Deng DJ. Methylation of CpG islands of p16 associated with progression of primary gastric carcinomas. Lab Investig. 2006;86:591–8.CrossRef
30.
go back to reference Deng D, Liu Z, Du Y. Epigenetic alterations as Cancer diagnostic, prognostic, and predictive biomarkers. In: Herceg Z, Ushijima T Epigenetics and Cancer, Pt Bed, vol. 71, 2010: 125–76.CrossRef Deng D, Liu Z, Du Y. Epigenetic alterations as Cancer diagnostic, prognostic, and predictive biomarkers. In: Herceg Z, Ushijima T Epigenetics and Cancer, Pt Bed, vol. 71, 2010: 125–76.CrossRef
31.
go back to reference Deng DJ, Lu ZM. Differentiation and Adaptation epigenetic networks: translational research in gastric carcinogenesis. Chin Sci Bull. 2013;58:1–6.CrossRef Deng DJ, Lu ZM. Differentiation and Adaptation epigenetic networks: translational research in gastric carcinogenesis. Chin Sci Bull. 2013;58:1–6.CrossRef
32.
go back to reference Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet. 2017;49:635–42.CrossRef Guo S, Diep D, Plongthongkum N, Fung HL, Zhang K. Identification of methylation haplotype blocks aids in deconvolution of heterogeneous tissue samples and tumor tissue-of-origin mapping from plasma DNA. Nat Genet. 2017;49:635–42.CrossRef
33.
go back to reference Moran S, Martinez-Cardús A, Boussios S, Esteller M. Precision medicine based on epigenomics: the paradigm of carcinoma of unknown primary. Nat Rev Clin Oncol. 2017;14:682–94.CrossRef Moran S, Martinez-Cardús A, Boussios S, Esteller M. Precision medicine based on epigenomics: the paradigm of carcinoma of unknown primary. Nat Rev Clin Oncol. 2017;14:682–94.CrossRef
34.
go back to reference Liu L, Lassam NJ, Slingerland JM, Bailey D, Cole D, Jenkins R, Hogg D. Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene. 1995;11:405–12.PubMed Liu L, Lassam NJ, Slingerland JM, Bailey D, Cole D, Jenkins R, Hogg D. Germline p16INK4A mutation and protein dysfunction in a family with inherited melanoma. Oncogene. 1995;11:405–12.PubMed
35.
go back to reference Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, Clark WH Jr, Tucker MA, Dracopoli NC. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8:15–21.CrossRef Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, Clark WH Jr, Tucker MA, Dracopoli NC. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8:15–21.CrossRef
36.
go back to reference Kannengiesser C, Brookes S, del Arroyo AG, Pham D, Bombled J, Barrois M, Mauffret O, Avril MF, Chompret A, Lenoir GM, Sarasin A, French hereditary melanoma study group, Peters G, Bressac-de Paillerets B. Functional, structural, and genetic evaluation of 20 CDKN2A germ line mutations identified in melanoma-prone families or patients. Hum Mutat. 2009;30:564–74.CrossRef Kannengiesser C, Brookes S, del Arroyo AG, Pham D, Bombled J, Barrois M, Mauffret O, Avril MF, Chompret A, Lenoir GM, Sarasin A, French hereditary melanoma study group, Peters G, Bressac-de Paillerets B. Functional, structural, and genetic evaluation of 20 CDKN2A germ line mutations identified in melanoma-prone families or patients. Hum Mutat. 2009;30:564–74.CrossRef
Metadata
Title
A similar effect of P16 hydroxymethylation and true-methylation on the prediction of malignant transformation of oral epithelial dysplasia: observation from a prospective study
Authors
Hongwei Liu
Zhaojun Liu
Xue-wei Liu
Si Xu
Lei Wang
Yang Liu
Jing Zhou
Liankun Gu
Yan Gao
Xiao-yong Liu
Huidong Shi
Zheng Sun
Dajun Deng
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4787-6

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine