Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes

Author: Melanie Kucherlapati

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Uncontrolled replication is a process common to all cancers facilitated by the summation of changes accumulated as tumors progress. The aim of this study was to examine small groups of genes with known biology in replication and repair at the transcriptional and genomic levels, correlating alterations with survival in uveal melanoma tumor progression. Selected components of Pre-Replication, Pre-Initiation, and Replisome Complexes, DNA Damage Response and Mismatch Repair have been observed.

Methods

Two groups have been generated for selected genes above and below the average alteration level and compared for expression and survival across The Cancer Genome Atlas uveal melanoma subtypes. Significant differences in expression between subtypes monosomic or disomic for chromosome 3 have been identified by Fisher’s exact test. Kaplan Meier survival distribution based on disease specific survival has been compared by Log-rank test.

Results

Genes with significant alteration include MCM2, MCM4, MCM5, CDC45, MCM10, CIZ1, PCNA, FEN1, LIG1, POLD1, POLE, HUS1, CHECK1, ATRIP, MLH3, and MSH6. Exon 4 skipping in CIZ1 previously identified as a cancer variant, and reportedly used as an early serum biomarker in lung cancer was found. Mismatch Repair protein MLH3 was found to have splicing variations with deletions to both Exon 5 and Exon 7 simultaneously. PCNA, FEN1, and LIG1 had increased relative expression levels not due to mutation or to copy number variation.

Conclusion

The current study proposes changes in relative and differential expression to replication and repair genes that support the concept their products are causally involved in uveal melanoma. Specific avenues for early biomarker identification and therapeutic approach are suggested.
Literature
1.
go back to reference Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32(2):204–20 e15. PubMed PMID: 28810145CrossRefPubMedPubMedCentral Robertson AG, Shih J, Yau C, Gibb EA, Oba J, Mungall KL, et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell. 2017;32(2):204–20 e15. PubMed PMID: 28810145CrossRefPubMedPubMedCentral
2.
go back to reference Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–5. PubMed PMID: 21704381CrossRefPubMed Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology. 2011;118(9):1881–5. PubMed PMID: 21704381CrossRefPubMed
3.
go back to reference Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol. 2017;11:279–89. PubMed PMID: 28203054. Pubmed Central PMCID: 5298817CrossRefPubMedPubMedCentral Krantz BA, Dave N, Komatsubara KM, Marr BP, Carvajal RD. Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol. 2017;11:279–89. PubMed PMID: 28203054. Pubmed Central PMCID: 5298817CrossRefPubMedPubMedCentral
4.
go back to reference Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res. 2017; PubMed PMID: 28843435. Bournique E, Dall'Osto M, Hoffmann JS, Bergoglio V. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission. Mutat Res. 2017; PubMed PMID: 28843435.
5.
go back to reference Royer-Bertrand B, Torsello M, Rimoldi D, El Zaoui I, Cisarova K, Pescini-Gobert R, et al. Comprehensive genetic landscape of uveal melanoma by whole-genome sequencing. Am J Hum Genet. 2016;99(5):1190–8. PubMed PMID: 27745836. Pubmed Central PMCID: 5097942CrossRefPubMedPubMedCentral Royer-Bertrand B, Torsello M, Rimoldi D, El Zaoui I, Cisarova K, Pescini-Gobert R, et al. Comprehensive genetic landscape of uveal melanoma by whole-genome sequencing. Am J Hum Genet. 2016;99(5):1190–8. PubMed PMID: 27745836. Pubmed Central PMCID: 5097942CrossRefPubMedPubMedCentral
6.
go back to reference Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. PubMed PMID: 23550210. Pubmed Central PMCID: 4160307CrossRefPubMedPubMedCentral Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6(269):pl1. PubMed PMID: 23550210. Pubmed Central PMCID: 4160307CrossRefPubMedPubMedCentral
7.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. PubMed PMID: 22588877. Pubmed Central PMCID: 3956037CrossRefPubMed Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4. PubMed PMID: 22588877. Pubmed Central PMCID: 3956037CrossRefPubMed
10.
go back to reference Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013 Mar;14(2):178–92. PubMed PMID: 22517427. Pubmed Central PMCID: 3603213 Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013 Mar;14(2):178–92. PubMed PMID: 22517427. Pubmed Central PMCID: 3603213
11.
go back to reference Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. PubMed PMID: 21221095. Pubmed Central PMCID: 3346182CrossRefPubMedPubMedCentral Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. PubMed PMID: 21221095. Pubmed Central PMCID: 3346182CrossRefPubMedPubMedCentral
13.
go back to reference Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V, Cancer Genome Atlas Research, Network, Hu H. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell.2018;173(2):400–16. PMCID: 6066282. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, Kovatich AJ, Benz CC, Levine DA, Lee AV, Omberg L, Wolf DM, Shriver CD, Thorsson V, Cancer Genome Atlas Research, Network, Hu H. An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics. Cell.2018;173(2):400–16. PMCID: 6066282.
15.
go back to reference Coverley D, Marr J, Ainscough J. Ciz1 promotes mammalian DNA replication. J Cell Sci. 2005;118(Pt 1):101–12. PubMed PMID: 15585571CrossRefPubMed Coverley D, Marr J, Ainscough J. Ciz1 promotes mammalian DNA replication. J Cell Sci. 2005;118(Pt 1):101–12. PubMed PMID: 15585571CrossRefPubMed
16.
go back to reference Ainscough JF, Rahman FA, Sercombe H, Sedo A, Gerlach B, Coverley D. C-terminal domains deliver the DNA replication factor Ciz1 to the nuclear matrix. J Cell Sci. 2007;120(Pt 1):115–24. PubMed PMID: 17182902PubMed Ainscough JF, Rahman FA, Sercombe H, Sedo A, Gerlach B, Coverley D. C-terminal domains deliver the DNA replication factor Ciz1 to the nuclear matrix. J Cell Sci. 2007;120(Pt 1):115–24. PubMed PMID: 17182902PubMed
17.
go back to reference Copeland NA, Sercombe HE, Ainscough JF, Coverley D. Ciz1 cooperates with cyclin-A-CDK2 to activate mammalian DNA replication in vitro. J Cell Sci. 2010;123(Pt 7):1108–15. PubMed PMID: 20215406. Pubmed Central PMCID: 2844319CrossRefPubMedPubMedCentral Copeland NA, Sercombe HE, Ainscough JF, Coverley D. Ciz1 cooperates with cyclin-A-CDK2 to activate mammalian DNA replication in vitro. J Cell Sci. 2010;123(Pt 7):1108–15. PubMed PMID: 20215406. Pubmed Central PMCID: 2844319CrossRefPubMedPubMedCentral
18.
go back to reference Munkley J, Copeland NA, Moignard V, Knight JR, Greaves E, Ramsbottom SA, et al. Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells. Nucleic Acids Res. 2011;39(7):2671–7. PubMed PMID: 21109536. Pubmed Central PMCID: 3074132CrossRefPubMed Munkley J, Copeland NA, Moignard V, Knight JR, Greaves E, Ramsbottom SA, et al. Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells. Nucleic Acids Res. 2011;39(7):2671–7. PubMed PMID: 21109536. Pubmed Central PMCID: 3074132CrossRefPubMed
19.
go back to reference Greaves EA, Copeland NA, Coverley D, Ainscough JF. Cancer-associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells. J Cell Sci. 2012;125(Pt 10):2466–77. PubMed PMID: 22366453CrossRefPubMed Greaves EA, Copeland NA, Coverley D, Ainscough JF. Cancer-associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells. J Cell Sci. 2012;125(Pt 10):2466–77. PubMed PMID: 22366453CrossRefPubMed
20.
go back to reference Pauzaite T, Thacker U, Tollitt J, Copeland NA. Emerging roles for Ciz1 in cell cycle regulation and as a driver of tumorigenesis. Biomol Ther. 2016;27:7(1). PubMed PMID: 28036012. Pubmed Central PMCID: 5372713 Pauzaite T, Thacker U, Tollitt J, Copeland NA. Emerging roles for Ciz1 in cell cycle regulation and as a driver of tumorigenesis. Biomol Ther. 2016;27:7(1). PubMed PMID: 28036012. Pubmed Central PMCID: 5372713
21.
go back to reference Rahman F, Ainscough JF, Copeland N, Coverley D. Cancer-associated missplicing of exon 4 influences the subnuclear distribution of the DNA replication factor CIZ1. Hum Mutat. 2007;28(10):993–1004. PubMed PMID: 17508423CrossRefPubMed Rahman F, Ainscough JF, Copeland N, Coverley D. Cancer-associated missplicing of exon 4 influences the subnuclear distribution of the DNA replication factor CIZ1. Hum Mutat. 2007;28(10):993–1004. PubMed PMID: 17508423CrossRefPubMed
22.
go back to reference Higgins G, Roper KM, Watson IJ, Blackhall FH, Rom WN, Pass HI, et al. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc Natl Acad Sci U S A. 2012;109(45):E3128–35. PubMed PMID: 23074256. Pubmed Central PMCID: 3494940CrossRefPubMedPubMedCentral Higgins G, Roper KM, Watson IJ, Blackhall FH, Rom WN, Pass HI, et al. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc Natl Acad Sci U S A. 2012;109(45):E3128–35. PubMed PMID: 23074256. Pubmed Central PMCID: 3494940CrossRefPubMedPubMedCentral
23.
go back to reference Dobbelstein M, Sorensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov. 2015;14(6):405–23. PubMed PMID: 25953507CrossRefPubMed Dobbelstein M, Sorensen CS. Exploiting replicative stress to treat cancer. Nat Rev Drug Discov. 2015;14(6):405–23. PubMed PMID: 25953507CrossRefPubMed
24.
go back to reference Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283(2):232–45. PubMed PMID: 26507796CrossRefPubMed Puigvert JC, Sanjiv K, Helleday T. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 2016;283(2):232–45. PubMed PMID: 26507796CrossRefPubMed
25.
go back to reference Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 2017;31(11):1073–88. PubMed PMID: 28717046CrossRefPubMedPubMedCentral Riera A, Barbon M, Noguchi Y, Reuter LM, Schneider S, Speck C. From structure to mechanism-understanding initiation of DNA replication. Genes Dev. 2017;31(11):1073–88. PubMed PMID: 28717046CrossRefPubMedPubMedCentral
26.
go back to reference Pruitt SC, Bailey KJ, Freeland A. Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells. 2007;25(12):3121–32. PubMed PMID: 17717065CrossRefPubMed Pruitt SC, Bailey KJ, Freeland A. Reduced Mcm2 expression results in severe stem/progenitor cell deficiency and cancer. Stem Cells. 2007;25(12):3121–32. PubMed PMID: 17717065CrossRefPubMed
27.
go back to reference Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, et al. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet. 2007;39(1):93–8. PubMed PMID: 17143284CrossRefPubMed Shima N, Alcaraz A, Liachko I, Buske TR, Andrews CA, Munroe RJ, et al. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat Genet. 2007;39(1):93–8. PubMed PMID: 17143284CrossRefPubMed
28.
go back to reference Kunnev D, Rusiniak ME, Kudla A, Freeland A, Cady GK, Pruitt SC. DNA damage response and tumorigenesis in Mcm2-deficient mice. Oncogene. 2010;29(25):3630–8. PubMed PMID: 20440269. Pubmed Central PMCID: 2892019CrossRefPubMedPubMedCentral Kunnev D, Rusiniak ME, Kudla A, Freeland A, Cady GK, Pruitt SC. DNA damage response and tumorigenesis in Mcm2-deficient mice. Oncogene. 2010;29(25):3630–8. PubMed PMID: 20440269. Pubmed Central PMCID: 2892019CrossRefPubMedPubMedCentral
29.
go back to reference Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41(5):543–53. PubMed PMID: 21362550. Pubmed Central PMCID: 3062258CrossRefPubMedPubMedCentral Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, et al. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell. 2011;41(5):543–53. PubMed PMID: 21362550. Pubmed Central PMCID: 3062258CrossRefPubMedPubMedCentral
30.
go back to reference Rusiniak ME, Kunnev D, Freeland A, Cady GK, Pruitt SC. Mcm2 deficiency results in short deletions allowing high resolution identification of genes contributing to lymphoblastic lymphoma. Oncogene. 2012;31(36):4034–44. PubMed PMID: 22158038. Pubmed Central PMCID: 3309111CrossRefPubMed Rusiniak ME, Kunnev D, Freeland A, Cady GK, Pruitt SC. Mcm2 deficiency results in short deletions allowing high resolution identification of genes contributing to lymphoblastic lymphoma. Oncogene. 2012;31(36):4034–44. PubMed PMID: 22158038. Pubmed Central PMCID: 3309111CrossRefPubMed
31.
go back to reference Kunnev D, Freeland A, Qin M, Leach RW, Wang J, Shenoy RM, et al. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins. Genome Res. 2015;25(4):558–69. PubMed PMID: 25762552. Pubmed Central PMCID: 4381527CrossRefPubMedPubMedCentral Kunnev D, Freeland A, Qin M, Leach RW, Wang J, Shenoy RM, et al. Effect of minichromosome maintenance protein 2 deficiency on the locations of DNA replication origins. Genome Res. 2015;25(4):558–69. PubMed PMID: 25762552. Pubmed Central PMCID: 4381527CrossRefPubMedPubMedCentral
32.
go back to reference Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol. 2015;22(8):618–26. PubMed PMID: 26167883. Pubmed Central PMCID: 4685956CrossRefPubMedPubMedCentral Huang H, Stromme CB, Saredi G, Hodl M, Strandsby A, Gonzalez-Aguilera C, et al. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks. Nat Struct Mol Biol. 2015;22(8):618–26. PubMed PMID: 26167883. Pubmed Central PMCID: 4685956CrossRefPubMedPubMedCentral
33.
go back to reference Ishimi Y, Komamura-Kohno Y, Arai K, Masai H. Biochemical activities associated with mouse Mcm2 protein. J Biol Chem. 2001;276(46):42744–52. PubMed PMID: 11568184CrossRefPubMed Ishimi Y, Komamura-Kohno Y, Arai K, Masai H. Biochemical activities associated with mouse Mcm2 protein. J Biol Chem. 2001;276(46):42744–52. PubMed PMID: 11568184CrossRefPubMed
34.
go back to reference Di Paola D, Zannis-Hadjopoulos M. Comparative analysis of pre-replication complex proteins in transformed and normal cells. J Cell Biochem. 2012;113(4):1333–47. PubMed PMID: 22134836CrossRefPubMed Di Paola D, Zannis-Hadjopoulos M. Comparative analysis of pre-replication complex proteins in transformed and normal cells. J Cell Biochem. 2012;113(4):1333–47. PubMed PMID: 22134836CrossRefPubMed
35.
go back to reference Kikuchi J, Kinoshita I, Shimizu Y, Kikuchi E, Takeda K, Aburatani H, et al. Minichromosome maintenance (MCM) protein 4 as a marker for proliferation and its clinical and clinicopathological significance in non-small cell lung cancer. Lung Cancer. 2011;72(2):229–37. PubMed PMID: 20884074CrossRefPubMed Kikuchi J, Kinoshita I, Shimizu Y, Kikuchi E, Takeda K, Aburatani H, et al. Minichromosome maintenance (MCM) protein 4 as a marker for proliferation and its clinical and clinicopathological significance in non-small cell lung cancer. Lung Cancer. 2011;72(2):229–37. PubMed PMID: 20884074CrossRefPubMed
36.
go back to reference Sheu YJ, Kinney JB, Lengronne A, Pasero P, Stillman B. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc Natl Acad Sci U S A. 2014;111(18):E1899–908. PubMed PMID: 24740181. Pubmed Central PMCID: 4020090CrossRefPubMedPubMedCentral Sheu YJ, Kinney JB, Lengronne A, Pasero P, Stillman B. Domain within the helicase subunit Mcm4 integrates multiple kinase signals to control DNA replication initiation and fork progression. Proc Natl Acad Sci U S A. 2014;111(18):E1899–908. PubMed PMID: 24740181. Pubmed Central PMCID: 4020090CrossRefPubMedPubMedCentral
37.
go back to reference Lipkin SM, Wang V, Jacoby R, Banerjee-Basu S, Baxevanis AD, Lynch HT, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet. 2000;24(1):27–35. PubMed PMID: 10615123CrossRefPubMed Lipkin SM, Wang V, Jacoby R, Banerjee-Basu S, Baxevanis AD, Lynch HT, et al. MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability. Nat Genet. 2000;24(1):27–35. PubMed PMID: 10615123CrossRefPubMed
38.
go back to reference Choe KN, Moldovan GL. Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol Cell. 2017;65(3):380–92. PubMed PMID: 28157503. Pubmed Central PMCID: 5302417CrossRefPubMedPubMedCentral Choe KN, Moldovan GL. Forging ahead through darkness: PCNA, still the principal conductor at the replication fork. Mol Cell. 2017;65(3):380–92. PubMed PMID: 28157503. Pubmed Central PMCID: 5302417CrossRefPubMedPubMedCentral
39.
go back to reference De Biasio A, Blanco FJ. Proliferating cell nuclear antigen structure and interactions: too many partners for one dancer? Adv Protein Chem Struct Biol. 2013;91:1–36. PubMed PMID: 23790209CrossRefPubMed De Biasio A, Blanco FJ. Proliferating cell nuclear antigen structure and interactions: too many partners for one dancer? Adv Protein Chem Struct Biol. 2013;91:1–36. PubMed PMID: 23790209CrossRefPubMed
40.
go back to reference Boehm EM, Washington MT. R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance. BioEssays. 2016;38(11):1117–22. PubMed PMID: 27539869. Pubmed Central PMCID: 5341575CrossRefPubMedPubMedCentral Boehm EM, Washington MT. R.I.P. to the PIP: PCNA-binding motif no longer considered specific: PIP motifs and other related sequences are not distinct entities and can bind multiple proteins involved in genome maintenance. BioEssays. 2016;38(11):1117–22. PubMed PMID: 27539869. Pubmed Central PMCID: 5341575CrossRefPubMedPubMedCentral
41.
go back to reference Stoimenov I, Helleday T. PCNA on the crossroad of cancer. Biochem Soc Trans. 2009;37(Pt 3):605–13. PubMed PMID: 19442257CrossRefPubMed Stoimenov I, Helleday T. PCNA on the crossroad of cancer. Biochem Soc Trans. 2009;37(Pt 3):605–13. PubMed PMID: 19442257CrossRefPubMed
42.
go back to reference Wang SC. PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci. 2014;35(4):178–86. PubMed PMID: 24655521CrossRefPubMed Wang SC. PCNA: a silent housekeeper or a potential therapeutic target? Trends Pharmacol Sci. 2014;35(4):178–86. PubMed PMID: 24655521CrossRefPubMed
43.
go back to reference Smith SJ, Gu L, Phipps EA, Dobrolecki LE, Mabrey KS, Gulley P, et al. A peptide mimicking a region in proliferating cell nuclear antigen specific to key protein interactions is cytotoxic to breast cancer. Mol Pharmacol. 2015;87(2):263–76. PubMed PMID: 25480843. Pubmed Central PMCID: 4293449CrossRefPubMedPubMedCentral Smith SJ, Gu L, Phipps EA, Dobrolecki LE, Mabrey KS, Gulley P, et al. A peptide mimicking a region in proliferating cell nuclear antigen specific to key protein interactions is cytotoxic to breast cancer. Mol Pharmacol. 2015;87(2):263–76. PubMed PMID: 25480843. Pubmed Central PMCID: 4293449CrossRefPubMedPubMedCentral
44.
go back to reference Gu L, Smith S, Li C, Hickey RJ, Stark JM, Fields GB, et al. A PCNA-derived cell permeable peptide selectively inhibits neuroblastoma cell growth. PLoS One. 2014;9(4):e94773. PubMed PMID: 24728180. Pubmed Central PMCID: 3984256CrossRefPubMedPubMedCentral Gu L, Smith S, Li C, Hickey RJ, Stark JM, Fields GB, et al. A PCNA-derived cell permeable peptide selectively inhibits neuroblastoma cell growth. PLoS One. 2014;9(4):e94773. PubMed PMID: 24728180. Pubmed Central PMCID: 3984256CrossRefPubMedPubMedCentral
45.
go back to reference Stillman B, Reconsidering DNA. Polymerases at the replication fork in eukaryotes. Mol Cell. 2015;59(2):139–41. PubMed PMID: 26186286. Pubmed Central PMCID: 4636199CrossRefPubMedPubMedCentral Stillman B, Reconsidering DNA. Polymerases at the replication fork in eukaryotes. Mol Cell. 2015;59(2):139–41. PubMed PMID: 26186286. Pubmed Central PMCID: 4636199CrossRefPubMedPubMedCentral
46.
go back to reference Rundle S, Bradbury A, Drew Y, Curtin NJ. Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel). 2017;9(5):41. PubMed PMID: 2844862. Pubmed Central PMCID: 5447951. Rundle S, Bradbury A, Drew Y, Curtin NJ. Targeting the ATR-CHK1 Axis in Cancer Therapy. Cancers (Basel). 2017;9(5):41. PubMed PMID: 2844862. Pubmed Central PMCID: 5447951.
47.
go back to reference Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300(5625):1542–8. PubMed PMID: 12791985CrossRefPubMed Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300(5625):1542–8. PubMed PMID: 12791985CrossRefPubMed
48.
go back to reference O'Connell BC, Adamson B, Lydeard JR, Sowa ME, Ciccia A, Bredemeyer AL, et al. A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Mol Cell. 2010;40(4):645–57. PubMed PMID: 21055985. Pubmed Central PMCID: 3006237CrossRefPubMedPubMedCentral O'Connell BC, Adamson B, Lydeard JR, Sowa ME, Ciccia A, Bredemeyer AL, et al. A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability. Mol Cell. 2010;40(4):645–57. PubMed PMID: 21055985. Pubmed Central PMCID: 3006237CrossRefPubMedPubMedCentral
49.
go back to reference Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science. 2001;294(5547):1713–6. PubMed PMID: 11721054CrossRefPubMed Cortez D, Guntuku S, Qin J, Elledge SJ. ATR and ATRIP: partners in checkpoint signaling. Science. 2001;294(5547):1713–6. PubMed PMID: 11721054CrossRefPubMed
50.
go back to reference Cortez D, Glick G, Elledge SJ. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci U S A. 2004;101(27):10078–83. PubMed PMID: 15210935. Pubmed Central PMCID: 454167CrossRefPubMedPubMedCentral Cortez D, Glick G, Elledge SJ. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci U S A. 2004;101(27):10078–83. PubMed PMID: 15210935. Pubmed Central PMCID: 454167CrossRefPubMedPubMedCentral
51.
go back to reference Burrows AE, Elledge SJ. How ATR turns on: TopBP1 goes on ATRIP with ATR. Genes Dev. 2008;22(11):1416–21. PubMed PMID: 18519633. Pubmed Central PMCID: 2732414CrossRefPubMedPubMedCentral Burrows AE, Elledge SJ. How ATR turns on: TopBP1 goes on ATRIP with ATR. Genes Dev. 2008;22(11):1416–21. PubMed PMID: 18519633. Pubmed Central PMCID: 2732414CrossRefPubMedPubMedCentral
52.
go back to reference Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 2014;74(16):4282–94. PubMed PMID: 24894717CrossRefPubMed Ismail IH, Davidson R, Gagne JP, Xu ZZ, Poirier GG, Hendzel MJ. Germline mutations in BAP1 impair its function in DNA double-strand break repair. Cancer Res. 2014;74(16):4282–94. PubMed PMID: 24894717CrossRefPubMed
53.
go back to reference Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014;111(1):285–90. PubMed PMID: 24347639. Pubmed Central PMCID: 3890818CrossRefPubMed Yu H, Pak H, Hammond-Martel I, Ghram M, Rodrigue A, Daou S, et al. Tumor suppressor and deubiquitinase BAP1 promotes DNA double-strand break repair. Proc Natl Acad Sci U S A. 2014;111(1):285–90. PubMed PMID: 24347639. Pubmed Central PMCID: 3890818CrossRefPubMed
Metadata
Title
Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes
Author
Melanie Kucherlapati
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4705-y

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine