Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells

Authors: Dandan Li, John E. Mullinax, Taylor Aiken, Hongwu Xin, Gordon Wiegand, Andrew Anderson, Snorri Thorgeirsson, Itzhak Avital, Udo Rudloff

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Label-retaining cancer cells (LRCC) have been proposed as a model of slowly cycling cancer stem cells (CSC) which mediate resistance to chemotherapy, tumor recurrence, and metastasis. The molecular mechanisms of chemoresistance in LRCC remain to-date incompletely understood. This study aims to identify molecular targets in LRCC that can be exploited to overcome resistance to gemcitabine, a standard chemotherapy agent for the treatment of pancreas cancer.

Methods

LRCC were isolated following Cy5-dUTP staining by flow cytometry from pancreatic cancer cell lines. Gene expression profiles obtained from LRCC, non-LRCC (NLRCC), and bulk tumor cells were used to generate differentially regulated pathway networks. Loss of upregulated targets in LRCC on gemcitabine sensitivity was assessed via RNAi experiments and pharmacological inhibition. Expression patterns of PDPK1, one of the upregulated targets in LRCC, was studied in patients’ tumor samples and correlated with pathological variables and clinical outcome.

Results

LRCC are significantly more resistant to gemcitabine than the bulk tumor cell population. Non-canonical EGF (epidermal growth factor)-mediated signal transduction emerged as the top upregulated network in LRCC compared to non-LRCC, and knock down of EGF signaling effectors PDPK1 (3-phosphoinositide dependent protein kinase-1), BMX (BMX non-receptor tyrosine kinase), and NTRK2 (neurotrophic receptor tyrosine kinase 2) or treatment with PDPK1 inhibitors increased growth inhibition and induction of apoptosis in response to gemcitabine. Knockdown of PDPK1 preferentially increased growth inhibition and reduced resistance to induction of apoptosis upon gemcitabine treatment in the LRCC vs non-LRCC population. These findings are accompanied by lower expression levels of PDPK1 in tumors compared to matched uninvolved pancreas in surgical resection specimens and a negative association of membranous localization on IHC with high nuclear grade (p < 0.01).

Conclusion

Pancreatic cancer cell-derived LRCC are relatively resistant to gemcitabine and harbor a unique transcriptomic profile compared to bulk tumor cells. PDPK1, one of the members of an upregulated EGF-signaling network in LRCC, mediates resistance to gemcitabine, is found to be dysregulated in pancreas cancer specimens, and might be an attractive molecular target for combination therapy studies.
Appendix
Available only for authorised users
Literature
2.
go back to reference Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRefPubMed Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74:2913–21.CrossRefPubMed
3.
go back to reference Ma J, Jemal A. The rise and fall of cancer mortality in the USA: why does pancreatic cancer not follow the trend? Future Oncol. 2013;9:917–9.CrossRefPubMed Ma J, Jemal A. The rise and fall of cancer mortality in the USA: why does pancreatic cancer not follow the trend? Future Oncol. 2013;9:917–9.CrossRefPubMed
4.
go back to reference Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed Conroy T, Desseigne F, Ychou M, et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med. 2011;364:1817–25.CrossRefPubMed
5.
go back to reference Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRefPubMedPubMedCentral Von Hoff DD, Ervin T, Arena FP, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.CrossRefPubMedPubMedCentral
7.
8.
go back to reference Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMed Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030–7.CrossRefPubMed
9.
10.
go back to reference Waclaw B, Bozic I, Pittman ME, et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature. 2015;525:261–4.CrossRefPubMedPubMedCentral Waclaw B, Bozic I, Pittman ME, et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature. 2015;525:261–4.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.CrossRefPubMed Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.CrossRefPubMed
13.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentral Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983–8.CrossRefPubMedPubMedCentral
14.
go back to reference Bartkowska K, Paquin A, Gauthier AS, et al. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development. 2007;134:4369–80.CrossRefPubMed Bartkowska K, Paquin A, Gauthier AS, et al. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development. 2007;134:4369–80.CrossRefPubMed
15.
go back to reference Shah AN, Summy JM, Zhang J, et al. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 2007;14:3629–37.CrossRefPubMed Shah AN, Summy JM, Zhang J, et al. Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol. 2007;14:3629–37.CrossRefPubMed
16.
17.
go back to reference Potten CS, Hume WJ, Reid P, et al. The segregation of DNA in epithelial stem cells. Cell. 1978;15:899–906.CrossRefPubMed Potten CS, Hume WJ, Reid P, et al. The segregation of DNA in epithelial stem cells. Cell. 1978;15:899–906.CrossRefPubMed
18.
go back to reference Xin HW, Ambe CM, Hari DM, et al. Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut. 2013;62:1777–86.CrossRefPubMed Xin HW, Ambe CM, Hari DM, et al. Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut. 2013;62:1777–86.CrossRefPubMed
19.
go back to reference Hari D, Xin H-W, Jaiswal K, et al. Isolation of live label-retaining cells and cells undergoing asymmetric cell division via nonrandom chromosomal Cosegregation from human cancers. Stem Cells Dev. 2011;20(10):1649-58. Hari D, Xin H-W, Jaiswal K, et al. Isolation of live label-retaining cells and cells undergoing asymmetric cell division via nonrandom chromosomal Cosegregation from human cancers. Stem Cells Dev. 2011;20(10):1649-58.
20.
go back to reference Xin HW, Hari DM, Mullinax JE, et al. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division. Stem Cells. 2012;30:591–8.CrossRefPubMedPubMedCentral Xin HW, Hari DM, Mullinax JE, et al. Tumor-initiating label-retaining cancer cells in human gastrointestinal cancers undergo asymmetric cell division. Stem Cells. 2012;30:591–8.CrossRefPubMedPubMedCentral
21.
go back to reference Schillert A, Trumpp A, Sprick MR. Label retaining cells in cancer--the dormant root of evil? Cancer Lett. 2013;341:73–9.CrossRefPubMed Schillert A, Trumpp A, Sprick MR. Label retaining cells in cancer--the dormant root of evil? Cancer Lett. 2013;341:73–9.CrossRefPubMed
22.
23.
go back to reference Moore N, Houghton J, Lyle S. Slow-cycling therapy-resistant cancer cells. Stem Cells Dev. 2012;21:1822–30.CrossRefPubMed Moore N, Houghton J, Lyle S. Slow-cycling therapy-resistant cancer cells. Stem Cells Dev. 2012;21:1822–30.CrossRefPubMed
24.
go back to reference Xin HW, Ambe CM, Miller TC, et al. Liver label retaining Cancer cells are relatively resistant to the reported anti-Cancer stem cell drug metformin. J Cancer. 2016;7:1142–51.CrossRefPubMedPubMedCentral Xin HW, Ambe CM, Miller TC, et al. Liver label retaining Cancer cells are relatively resistant to the reported anti-Cancer stem cell drug metformin. J Cancer. 2016;7:1142–51.CrossRefPubMedPubMedCentral
25.
go back to reference Perego M, Maurer M, Wang JX, et al. A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene. 2018;37:302–12.CrossRefPubMed Perego M, Maurer M, Wang JX, et al. A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene. 2018;37:302–12.CrossRefPubMed
26.
go back to reference Zhang D, Jeter C, Gong S, et al. Histone 2B-GFP label-retaining prostate luminal cells possess progenitor cell properties and are intrinsically resistant to castration. Stem Cell Reports. 2018;10:228–42.CrossRefPubMed Zhang D, Jeter C, Gong S, et al. Histone 2B-GFP label-retaining prostate luminal cells possess progenitor cell properties and are intrinsically resistant to castration. Stem Cell Reports. 2018;10:228–42.CrossRefPubMed
27.
go back to reference Kurtova AV, Xiao J, Mo Q, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 2015;517:209–13.CrossRefPubMed Kurtova AV, Xiao J, Mo Q, et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature. 2015;517:209–13.CrossRefPubMed
28.
go back to reference Balic M, Lin H, Young L, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006;12:5615–21.CrossRefPubMed Balic M, Lin H, Young L, et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res. 2006;12:5615–21.CrossRefPubMed
29.
go back to reference Morgan TM, Lange PH, Porter MP, et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res. 2009;15:677–83.CrossRefPubMedPubMedCentral Morgan TM, Lange PH, Porter MP, et al. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin Cancer Res. 2009;15:677–83.CrossRefPubMedPubMedCentral
30.
go back to reference Pine SR, Ryan BM, Varticovski L, et al. Microenvironmental modulation of asymmetric cell division in human lung cancer cells. Proc Natl Acad Sci U S A. 2010;107:2195–200.CrossRefPubMedPubMedCentral Pine SR, Ryan BM, Varticovski L, et al. Microenvironmental modulation of asymmetric cell division in human lung cancer cells. Proc Natl Acad Sci U S A. 2010;107:2195–200.CrossRefPubMedPubMedCentral
31.
go back to reference Takikita M, Altekruse S, Lynch CF, et al. Associations between selected biomarkers and prognosis in a population-based pancreatic Cancer tissue microarray. Cancer Res. 2009;69:2950–5.CrossRefPubMedPubMedCentral Takikita M, Altekruse S, Lynch CF, et al. Associations between selected biomarkers and prognosis in a population-based pancreatic Cancer tissue microarray. Cancer Res. 2009;69:2950–5.CrossRefPubMedPubMedCentral
32.
go back to reference Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche--there goes the neighborhood? Int J Cancer. 2011;129:2315–27.CrossRefPubMed Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche--there goes the neighborhood? Int J Cancer. 2011;129:2315–27.CrossRefPubMed
33.
go back to reference Van den Broeck A, Gremeaux L, Topal B, et al. Human pancreatic adenocarcinoma contains a side population resistant to gemcitabine. BMC Cancer. 2012;12:354.CrossRefPubMedPubMedCentral Van den Broeck A, Gremeaux L, Topal B, et al. Human pancreatic adenocarcinoma contains a side population resistant to gemcitabine. BMC Cancer. 2012;12:354.CrossRefPubMedPubMedCentral
34.
go back to reference Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.CrossRefPubMed Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9:265–73.CrossRefPubMed
35.
go back to reference Zheng X, Carstens JL, Kim J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30.CrossRefPubMedPubMedCentral Zheng X, Carstens JL, Kim J, et al. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature. 2015;527:525–30.CrossRefPubMedPubMedCentral
36.
go back to reference Fischer KR, Durrans A, Lee S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–6.CrossRefPubMedPubMedCentral Fischer KR, Durrans A, Lee S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature. 2015;527:472–6.CrossRefPubMedPubMedCentral
37.
go back to reference Dontu G, Al-Hajj M, Abdallah W, et al. Stem cells in normal breast development and breast Cancer. Cell Prolif. 2003;36:59–72.CrossRefPubMed Dontu G, Al-Hajj M, Abdallah W, et al. Stem cells in normal breast development and breast Cancer. Cell Prolif. 2003;36:59–72.CrossRefPubMed
38.
go back to reference Korkaya H, Paulson A, Charafe-Jauffret E, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7:e1000121.CrossRefPubMedPubMedCentral Korkaya H, Paulson A, Charafe-Jauffret E, et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 2009;7:e1000121.CrossRefPubMedPubMedCentral
39.
go back to reference Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid Leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.CrossRefPubMed Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid Leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.CrossRefPubMed
40.
go back to reference Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011. Moore N, Lyle S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol. 2011;2011.
41.
go back to reference Kitade M, Factor VM, Andersen JB, et al. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev. 2013;27:1706–17.CrossRefPubMedPubMedCentral Kitade M, Factor VM, Andersen JB, et al. Specific fate decisions in adult hepatic progenitor cells driven by MET and EGFR signaling. Genes Dev. 2013;27:1706–17.CrossRefPubMedPubMedCentral
42.
go back to reference Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10:R25.CrossRefPubMedPubMedCentral Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10:R25.CrossRefPubMedPubMedCentral
43.
go back to reference Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–94.CrossRefPubMedPubMedCentral Roesch A, Fukunaga-Kalabis M, Schmidt EC, et al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell. 2010;141:583–94.CrossRefPubMedPubMedCentral
44.
go back to reference Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26:611–23.CrossRefPubMedPubMedCentral Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis. 2009;26:611–23.CrossRefPubMedPubMedCentral
45.
go back to reference Sainz B, Alcala S, Garcia E, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut. 2015;64:1921–35.CrossRefPubMed Sainz B, Alcala S, Garcia E, et al. Microenvironmental hCAP-18/LL-37 promotes pancreatic ductal adenocarcinoma by activating its cancer stem cell compartment. Gut. 2015;64:1921–35.CrossRefPubMed
46.
go back to reference Carnero A, Lleonart M. The hypoxic microenvironment: a determinant of cancer stem cell evolution. Inside the Cell. 2016;1:96–105.CrossRef Carnero A, Lleonart M. The hypoxic microenvironment: a determinant of cancer stem cell evolution. Inside the Cell. 2016;1:96–105.CrossRef
47.
go back to reference Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res. 2011;13:211.CrossRefPubMedPubMedCentral Takebe N, Warren RQ, Ivy SP. Breast cancer growth and metastasis: interplay between cancer stem cells, embryonic signaling pathways and epithelial-to-mesenchymal transition. Breast Cancer Res. 2011;13:211.CrossRefPubMedPubMedCentral
49.
go back to reference Cunningham JT, Ruggero D. New connections between old pathways: PDK1 signaling promotes cellular transformation through PLK1-dependent MYC stabilization. Cancer Discov. 2013;3:1099–102.CrossRefPubMed Cunningham JT, Ruggero D. New connections between old pathways: PDK1 signaling promotes cellular transformation through PLK1-dependent MYC stabilization. Cancer Discov. 2013;3:1099–102.CrossRefPubMed
50.
go back to reference Tan J, Li Z, Lee PL, et al. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Cancer Discov. 2013;3:1156–71.CrossRefPubMed Tan J, Li Z, Lee PL, et al. PDK1 signaling toward PLK1-MYC activation confers oncogenic transformation, tumor-initiating cell activation, and resistance to mTOR-targeted therapy. Cancer Discov. 2013;3:1156–71.CrossRefPubMed
51.
go back to reference Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006;25:2781–91.CrossRefPubMedPubMedCentral Shahbazian D, Roux PP, Mieulet V, et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J. 2006;25:2781–91.CrossRefPubMedPubMedCentral
52.
go back to reference Fan R, Kim NG, Gumbiner BM. Regulation of hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci U S A. 2013;110:2569–74.CrossRefPubMedPubMedCentral Fan R, Kim NG, Gumbiner BM. Regulation of hippo pathway by mitogenic growth factors via phosphoinositide 3-kinase and phosphoinositide-dependent kinase-1. Proc Natl Acad Sci U S A. 2013;110:2569–74.CrossRefPubMedPubMedCentral
53.
go back to reference Eser S, Reiff N, Messer M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013;23:406–20.CrossRefPubMed Eser S, Reiff N, Messer M, et al. Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer. Cancer Cell. 2013;23:406–20.CrossRefPubMed
54.
go back to reference Cicenas J. The potential role of Akt phosphorylation in human cancers. Int J Biol Markers. 2008;23:1–9.CrossRefPubMed Cicenas J. The potential role of Akt phosphorylation in human cancers. Int J Biol Markers. 2008;23:1–9.CrossRefPubMed
55.
go back to reference Shah A, Swain WA, Richardson D, et al. Phospho-Akt expression is associated with a favorable outcome in non-small cell lung cancer. Clin Cancer Res. 2005;11:2930–6.CrossRefPubMed Shah A, Swain WA, Richardson D, et al. Phospho-Akt expression is associated with a favorable outcome in non-small cell lung cancer. Clin Cancer Res. 2005;11:2930–6.CrossRefPubMed
56.
go back to reference Schlieman MG, Fahy BN, Ramsamooj R, et al. Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer. 2003;89:2110–5.CrossRefPubMedPubMedCentral Schlieman MG, Fahy BN, Ramsamooj R, et al. Incidence, mechanism and prognostic value of activated AKT in pancreas cancer. Br J Cancer. 2003;89:2110–5.CrossRefPubMedPubMedCentral
57.
go back to reference Yamamoto S, Tomita Y, Hoshida Y, et al. Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2004;10:2846–50.CrossRefPubMed Yamamoto S, Tomita Y, Hoshida Y, et al. Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2004;10:2846–50.CrossRefPubMed
58.
go back to reference Guryanova OA, Wu Q, Cheng L, et al. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell. 2011;19:498–511.CrossRefPubMedPubMedCentral Guryanova OA, Wu Q, Cheng L, et al. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell. 2011;19:498–511.CrossRefPubMedPubMedCentral
59.
go back to reference Nikoletopoulou V, Lickert H, Frade JM, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010;467:59–63.CrossRefPubMed Nikoletopoulou V, Lickert H, Frade JM, et al. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature. 2010;467:59–63.CrossRefPubMed
60.
go back to reference Mathews LA, Cabarcas SM, Hurt EM, et al. Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas. 2011;40:730–9.CrossRefPubMedPubMedCentral Mathews LA, Cabarcas SM, Hurt EM, et al. Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas. 2011;40:730–9.CrossRefPubMedPubMedCentral
61.
go back to reference Williams SA, Anderson WC, Santaguida MT, et al. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Investig. 2013;93:970–82.CrossRefPubMed Williams SA, Anderson WC, Santaguida MT, et al. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Investig. 2013;93:970–82.CrossRefPubMed
62.
go back to reference Adikrisna R, Tanaka S, Muramatsu S, et al. Identification of pancreatic cancer stem cells and selective toxicity of chemotherapeutic agents. Gastroenterology. 2012;143:234–45 e7.CrossRefPubMed Adikrisna R, Tanaka S, Muramatsu S, et al. Identification of pancreatic cancer stem cells and selective toxicity of chemotherapeutic agents. Gastroenterology. 2012;143:234–45 e7.CrossRefPubMed
63.
Metadata
Title
Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells
Authors
Dandan Li
John E. Mullinax
Taylor Aiken
Hongwu Xin
Gordon Wiegand
Andrew Anderson
Snorri Thorgeirsson
Itzhak Avital
Udo Rudloff
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4690-1

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine