Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Differential expression of hsa-miR-221, hsa-miR-21, hsa-miR-135b, and hsa-miR-29c suggests a field effect in oral cancer

Authors: Camile B. Lopes, Leandro L. Magalhães, Carolina R. Teófilo, Ana Paula N. N. Alves, Raquel C. Montenegro, Massimo Negrini, Ândrea Ribeiro-dos-Santos

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

The theory of field effect suggests that the tumor-adjacent area, besides histopathologically normal, undergoes genetic and epigenetic changes that can eventually affect epithelial homeostasis, predisposing the patient to cancer development. One of the many molecular changes described in cancer are microRNAs (miRNAs), which regulates the expression of important genes during carcinogenesis. Thus, the aim of this study was to investigate the field effect in oral cancer.

Methods

We investigated the differential expression profile of four miRNAs (hsa-miR-221, hsa-miR-21, hsa-miR-135b, and hsa-miR-29c) in cancerous oral tissue, in tumor-adjacent tissue and and in non-cancerous tissue samples from healthy volunteers.

Results

Our results showed significant overexpression profiles of all four studied miRNAs in cancerous oral tissue compared to non-cancerous samples, as well as in tumor-adjacent tissue compared to cancer-free tissue. No significant difference was found when comparing the expression profile of cancerous and tissue-adjacent tissue groups. We found a negative correlation between the expression of hsa-miR-21 expression and STAT3 in oral squamous cell carcinoma.

Conclusion

These results suggest that the tissue adjacent to cancer cannot be considered a normal tissue because its molecular aspects are significantly altered. Our data corroborates the hypothesis of field cancerization.
Literature
1.
go back to reference Silveira A, Gonçalves J, Sequeira T, Ribeiro C, Lopes C, Monteiro E, et al. Head and neck cancer: health related quality of life assessment considering clinical and epidemiological perspectives. Rev Bras Epidemiol. 2012;15(1):38–48.CrossRefPubMed Silveira A, Gonçalves J, Sequeira T, Ribeiro C, Lopes C, Monteiro E, et al. Head and neck cancer: health related quality of life assessment considering clinical and epidemiological perspectives. Rev Bras Epidemiol. 2012;15(1):38–48.CrossRefPubMed
2.
go back to reference Harding S, Sanipour F, Moss T. Existence of benefit finding and posttraumatic growth in people treated for head and neck cancer: a systematic review. Peer J. 2014;11(2):e256.CrossRef Harding S, Sanipour F, Moss T. Existence of benefit finding and posttraumatic growth in people treated for head and neck cancer: a systematic review. Peer J. 2014;11(2):e256.CrossRef
3.
go back to reference Yang W, Zhao S, Liu F, Sun M. Health-related quality of life after mandibular resection for oral cancer: reconstruction with free fibula flap. Med Oral Patol Oral Cir Bucal. 2014;19(4):e414.CrossRefPubMedPubMedCentral Yang W, Zhao S, Liu F, Sun M. Health-related quality of life after mandibular resection for oral cancer: reconstruction with free fibula flap. Med Oral Patol Oral Cir Bucal. 2014;19(4):e414.CrossRefPubMedPubMedCentral
4.
go back to reference Takes RP, Rinaldo A, Silver CE, Haigentz M, Woolgar JA, Triantafyllou A, et al. Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral Oncol. 2012;48:775–9.CrossRefPubMed Takes RP, Rinaldo A, Silver CE, Haigentz M, Woolgar JA, Triantafyllou A, et al. Distant metastases from head and neck squamous cell carcinoma. Part I. Basic aspects. Oral Oncol. 2012;48:775–9.CrossRefPubMed
5.
go back to reference Yi JS, Kim JH, Lee SH, Choi SY, Nam SY, Kim, et al. 18F-FDG PET/CT for detecting distant metastases in patients with recurrent head and neck squamous cell carcinoma. J Surg Oncol. 2012;106:708–12.CrossRefPubMed Yi JS, Kim JH, Lee SH, Choi SY, Nam SY, Kim, et al. 18F-FDG PET/CT for detecting distant metastases in patients with recurrent head and neck squamous cell carcinoma. J Surg Oncol. 2012;106:708–12.CrossRefPubMed
6.
go back to reference Slaughter PD, Southwick HW, Smejkal W. “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer. 1953;65:963–8.CrossRef Slaughter PD, Southwick HW, Smejkal W. “Field cancerization” in oral stratified squamous epithelium. Clinical implications of multicentric origin. Cancer. 1953;65:963–8.CrossRef
7.
go back to reference Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in human cancer: from research to therapy. J Cell Sci. 2007;120(Pt 11):1833–40.CrossRefPubMed Negrini M, Ferracin M, Sabbioni S, Croce CM. MicroRNAs in human cancer: from research to therapy. J Cell Sci. 2007;120(Pt 11):1833–40.CrossRefPubMed
9.
go back to reference Lupini L, Bassi C, Ferracin M, Bartonicek N, D’Abundo L, Zagatti B, et al. miR-221 affects multiple cancer pathways by modulating the level of hundreds messenger RNAs. Front Genet. 2013;4:64.CrossRefPubMedPubMedCentral Lupini L, Bassi C, Ferracin M, Bartonicek N, D’Abundo L, Zagatti B, et al. miR-221 affects multiple cancer pathways by modulating the level of hundreds messenger RNAs. Front Genet. 2013;4:64.CrossRefPubMedPubMedCentral
10.
go back to reference O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. C-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.CrossRefPubMed O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. C-Myc-regulated microRNAs modulate E2F1 expression. Nature. 2005;435:839–43.CrossRefPubMed
11.
go back to reference Ribeiro-dos-Santos A, Cruz AMP, Darnet S. Deep Sequencing of MicroRNAs in Cancer: Expression profiling and its applications. In: Mallick B, Ghosh Z, editors. (org.) Regulatory RNAs. 21ed, vol. 1. Berlin Heidelberg: Springer; 2012. p. 523–46.CrossRef Ribeiro-dos-Santos A, Cruz AMP, Darnet S. Deep Sequencing of MicroRNAs in Cancer: Expression profiling and its applications. In: Mallick B, Ghosh Z, editors. (org.) Regulatory RNAs. 21ed, vol. 1. Berlin Heidelberg: Springer; 2012. p. 523–46.CrossRef
12.
go back to reference Darnet S, Moreira FC, Hamoy IG, Burbano RMR, Khayat AS, Cruz A, Magalhaes LL, Silva ALC, Santos SB, Demackhi S, Assumpção MB, Assumpção P, Ribeiro-dos-santos A. High-throughput sequencing of miRNAs reveals a tissue signature in gastric Cancer and suggests novel potential biomarkers. Bioinf Biol Insights. 2015;9:1–8. Darnet S, Moreira FC, Hamoy IG, Burbano RMR, Khayat AS, Cruz A, Magalhaes LL, Silva ALC, Santos SB, Demackhi S, Assumpção MB, Assumpção P, Ribeiro-dos-santos A. High-throughput sequencing of miRNAs reveals a tissue signature in gastric Cancer and suggests novel potential biomarkers. Bioinf Biol Insights. 2015;9:1–8.
13.
go back to reference Van Den Berg AV, Magalhães LL, Vidal AF, Cruz Aline MP, Ribeiro-dos-Santos Â. MicroRNAs as biomarkers of the response to treatment with ABVD scheme in Hodgkin lymphoma. J Leuk. 2016;3:1–6. Van Den Berg AV, Magalhães LL, Vidal AF, Cruz Aline MP, Ribeiro-dos-Santos Â. MicroRNAs as biomarkers of the response to treatment with ABVD scheme in Hodgkin lymphoma. J Leuk. 2016;3:1–6.
14.
go back to reference Vidal AF, Cruz AM, Magalhães L, Pereira AL, Anaissi AK, Alves NC, et al. Hsa-miR-29c and hsa-miR-135b differential expression as potential biomarker of gastric carcinogenesis. World J Gastroenterol. 2016;22(6):2060.CrossRefPubMedPubMedCentral Vidal AF, Cruz AM, Magalhães L, Pereira AL, Anaissi AK, Alves NC, et al. Hsa-miR-29c and hsa-miR-135b differential expression as potential biomarker of gastric carcinogenesis. World J Gastroenterol. 2016;22(6):2060.CrossRefPubMedPubMedCentral
15.
go back to reference Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.CrossRefPubMedPubMedCentral Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006;103(7):2257–61.CrossRefPubMedPubMedCentral
16.
go back to reference Ribeiro-dos-Santos Â, Khayat AS, Silva A, Alencar DO, Lobato J, Luz L, et al. Ultra-deep sequencing reveals the microRNA expression pattern of the human stomach. PLoS One. 2010;5:13205.CrossRef Ribeiro-dos-Santos Â, Khayat AS, Silva A, Alencar DO, Lobato J, Luz L, et al. Ultra-deep sequencing reveals the microRNA expression pattern of the human stomach. PLoS One. 2010;5:13205.CrossRef
17.
go back to reference Ramdas L, Giri U, Ashorn CL, Coombes KR, El-Naggar A, Ang KK, et al. miRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue. Head Neck. 2009;31(5):642–54.CrossRefPubMedPubMedCentral Ramdas L, Giri U, Ashorn CL, Coombes KR, El-Naggar A, Ang KK, et al. miRNA expression profiles in head and neck squamous cell carcinoma and adjacent normal tissue. Head Neck. 2009;31(5):642–54.CrossRefPubMedPubMedCentral
18.
go back to reference Peng F, Zhang H, Du Y, Tan P. miR-23a promotes cisplatin chemoresistance and protects against cisplatin-induced apoptosis in tongue squamous cell carcinoma cells through twist. Oncol Rep. 2015;33(2):942–50.CrossRefPubMed Peng F, Zhang H, Du Y, Tan P. miR-23a promotes cisplatin chemoresistance and protects against cisplatin-induced apoptosis in tongue squamous cell carcinoma cells through twist. Oncol Rep. 2015;33(2):942–50.CrossRefPubMed
19.
go back to reference Hung KF, Liu CJ, Chiu PC, Lin JS, Chang KW, Shih WY, et al. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol. 2016;53:42–7.CrossRefPubMed Hung KF, Liu CJ, Chiu PC, Lin JS, Chang KW, Shih WY, et al. MicroRNA-31 upregulation predicts increased risk of progression of oral potentially malignant disorder. Oral Oncol. 2016;53:42–7.CrossRefPubMed
20.
go back to reference Kawakita A, Yanamoto S, Yamada S, Naruse T, Takahashi H, Kawasaki G, et al. MicroRNA-21 promotes oral cancer invasion via the Wnt/β-catenin pathway by targeting DKK2. Pathol Oncol Res. 2014;20(2):253–61.CrossRefPubMed Kawakita A, Yanamoto S, Yamada S, Naruse T, Takahashi H, Kawasaki G, et al. MicroRNA-21 promotes oral cancer invasion via the Wnt/β-catenin pathway by targeting DKK2. Pathol Oncol Res. 2014;20(2):253–61.CrossRefPubMed
21.
go back to reference Manikandan M, Rao DM, Arunagiri K, Rajkumar KS, Rajaraman R, Munirajan AK. Altered levels of miR-21, miR-125b-2*, miR-138, miR-155, miR-184, and miR-205 in oral squamous cell carcinoma and association with clinicopathological characteristics. J Oral Pathol Med. 2015;44(10):792–800.CrossRefPubMed Manikandan M, Rao DM, Arunagiri K, Rajkumar KS, Rajaraman R, Munirajan AK. Altered levels of miR-21, miR-125b-2*, miR-138, miR-155, miR-184, and miR-205 in oral squamous cell carcinoma and association with clinicopathological characteristics. J Oral Pathol Med. 2015;44(10):792–800.CrossRefPubMed
22.
go back to reference Avissar M, Christensen BC, Kelsey KT, Marsit CJ. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15(8):2850–5.CrossRefPubMedPubMedCentral Avissar M, Christensen BC, Kelsey KT, Marsit CJ. MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res. 2009;15(8):2850–5.CrossRefPubMedPubMedCentral
23.
go back to reference He Q, Chen Z, Cabay RJ, Zhang L, Luan X, Chen D, et al. microRNA-21 and microRNA-375 from oral cytology as biomarkers for oral tongue cancer detection. Oral Oncol. 2016;57:15–20.CrossRefPubMedPubMedCentral He Q, Chen Z, Cabay RJ, Zhang L, Luan X, Chen D, et al. microRNA-21 and microRNA-375 from oral cytology as biomarkers for oral tongue cancer detection. Oral Oncol. 2016;57:15–20.CrossRefPubMedPubMedCentral
24.
go back to reference Wang Y, Zhu Y, Lv P, Li L. The role of miR-21 in proliferation and invasion capacity of human tongue squamous cell carcinoma in vitro. Int J Clin Exp Pathol. 2015;8(5):4555–63.PubMedPubMedCentral Wang Y, Zhu Y, Lv P, Li L. The role of miR-21 in proliferation and invasion capacity of human tongue squamous cell carcinoma in vitro. Int J Clin Exp Pathol. 2015;8(5):4555–63.PubMedPubMedCentral
25.
go back to reference Lajer CB, Nielsen FC, Friis-Hansen L, Norrild B, Borup R, Garnaes E, et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer. 2011;104(5):830–40.CrossRefPubMedPubMedCentral Lajer CB, Nielsen FC, Friis-Hansen L, Norrild B, Borup R, Garnaes E, et al. Different miRNA signatures of oral and pharyngeal squamous cell carcinomas: a prospective translational study. Br J Cancer. 2011;104(5):830–40.CrossRefPubMedPubMedCentral
26.
go back to reference Yang CJ, Shen WG, Liu CJ, Chen YW, Lu HH, Tsai MM, et al. miR-221 and miR-222 expression increased the growth and tumorigenesis of oral carcinoma cells. J Oral Pathol Med. 2011;40(7):560–6.CrossRefPubMed Yang CJ, Shen WG, Liu CJ, Chen YW, Lu HH, Tsai MM, et al. miR-221 and miR-222 expression increased the growth and tumorigenesis of oral carcinoma cells. J Oral Pathol Med. 2011;40(7):560–6.CrossRefPubMed
27.
go back to reference Sethi A, Wright Wood H, Rabbitts P. MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer. 2014;50(15):2619–35.CrossRefPubMed Sethi A, Wright Wood H, Rabbitts P. MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer. 2014;50(15):2619–35.CrossRefPubMed
28.
go back to reference Serrano NA, Xu C, Liu Y, Wang P, Fan W, Upton MP, et al. Integrative analysis in oral squamous cell carcinoma reveals DNA copy number-associated miRNAs dysregulating target genes. Otolaryngol Head Neck Surg. 2012; Sep;147(3):501–8.CrossRefPubMed Serrano NA, Xu C, Liu Y, Wang P, Fan W, Upton MP, et al. Integrative analysis in oral squamous cell carcinoma reveals DNA copy number-associated miRNAs dysregulating target genes. Otolaryngol Head Neck Surg. 2012; Sep;147(3):501–8.CrossRefPubMed
29.
go back to reference Hilly O, Pillar N, Stern S, Strenov Y, Bachar G, Shomron N, et al. Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncol Lett. 2016;12(3):1729–36.CrossRefPubMedPubMedCentral Hilly O, Pillar N, Stern S, Strenov Y, Bachar G, Shomron N, et al. Distinctive pattern of let-7 family microRNAs in aggressive carcinoma of the oral tongue in young patients. Oncol Lett. 2016;12(3):1729–36.CrossRefPubMedPubMedCentral
30.
go back to reference Li S, Chen X, Liu X, Yu Y, Pan H, Haak R, et al. Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma. Oral Oncol. 2017;73:1–9.CrossRefPubMed Li S, Chen X, Liu X, Yu Y, Pan H, Haak R, et al. Complex integrated analysis of lncRNAs-miRNAs-mRNAs in oral squamous cell carcinoma. Oral Oncol. 2017;73:1–9.CrossRefPubMed
31.
go back to reference Assumpção MB, Moreira FC, Hamoy IG, Magalhães L, Vidal A, Pereira A, et al. High-throughput miRNA sequencing reveals a field effect in gastric cancer and suggests an epigenetic network mechanism. Bioinf Biol Insights. 2015;9:111.CrossRef Assumpção MB, Moreira FC, Hamoy IG, Magalhães L, Vidal A, Pereira A, et al. High-throughput miRNA sequencing reveals a field effect in gastric cancer and suggests an epigenetic network mechanism. Bioinf Biol Insights. 2015;9:111.CrossRef
32.
go back to reference Barnes L. Pathology and genetics of head and neck Tumours. WHO Class Tumour. 2005;9:163–75. Barnes L. Pathology and genetics of head and neck Tumours. WHO Class Tumour. 2005;9:163–75.
33.
go back to reference Macha MA, Matta A, Kaur J, Chauhan SS, Thakar A, Shukla NK, et al. Prognostic significance of nuclear pSTAT3 in oral cancer. Head Neck. 2011;33(4):482–9.CrossRefPubMed Macha MA, Matta A, Kaur J, Chauhan SS, Thakar A, Shukla NK, et al. Prognostic significance of nuclear pSTAT3 in oral cancer. Head Neck. 2011;33(4):482–9.CrossRefPubMed
34.
go back to reference Xu XM, Qian JC, Deng ZL, Cai Z, Tang T, Wang P, et al. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett. 2012;4(2):339–45.CrossRefPubMedPubMedCentral Xu XM, Qian JC, Deng ZL, Cai Z, Tang T, Wang P, et al. Expression of miR-21, miR-31, miR-96 and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett. 2012;4(2):339–45.CrossRefPubMedPubMedCentral
35.
go back to reference Nouraee N, Van Roosbroeck K, Vasei M, Semnani S, Samaei NM, Naghshvar F, et al. Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLoS One. 2013;8(9):e73009.CrossRefPubMedPubMedCentral Nouraee N, Van Roosbroeck K, Vasei M, Semnani S, Samaei NM, Naghshvar F, et al. Expression, tissue distribution and function of miR-21 in esophageal squamous cell carcinoma. PLoS One. 2013;8(9):e73009.CrossRefPubMedPubMedCentral
36.
go back to reference Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 2013;52(4):297–303.CrossRefPubMed Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D. Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog. 2013;52(4):297–303.CrossRefPubMed
37.
go back to reference Ren W, Wang X, Gao L, Li S, Yan X, Zhang J, et al. MiR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4. Mol Cell Biochem. 2014;390(1–2):253–62.CrossRefPubMed Ren W, Wang X, Gao L, Li S, Yan X, Zhang J, et al. MiR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4. Mol Cell Biochem. 2014;390(1–2):253–62.CrossRefPubMed
38.
go back to reference Zhou X, Ren Y, Liu A, Han L, Zhang K, Li S, et al. STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo. Oncol Rep. 2014;31(5):2173–80.CrossRefPubMed Zhou X, Ren Y, Liu A, Han L, Zhang K, Li S, et al. STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo. Oncol Rep. 2014;31(5):2173–80.CrossRefPubMed
39.
go back to reference Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH, et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the hippo pathway and LZTS1. Nat Commun. 2013;4:1877.CrossRefPubMed Lin CW, Chang YL, Chang YC, Lin JC, Chen CC, Pan SH, et al. MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the hippo pathway and LZTS1. Nat Commun. 2013;4:1877.CrossRefPubMed
40.
go back to reference Xu Y, Zhao S, Cui M, Wang Q. Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1. Int J Clin Exp Pathol. 2015;8(9):10294–304.PubMedPubMedCentral Xu Y, Zhao S, Cui M, Wang Q. Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1. Int J Clin Exp Pathol. 2015;8(9):10294–304.PubMedPubMedCentral
41.
go back to reference Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T, Komatsu N, et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood. 2011;118:6881–92.CrossRefPubMed Matsuyama H, Suzuki HI, Nishimori H, Noguchi M, Yao T, Komatsu N, et al. miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood. 2011;118:6881–92.CrossRefPubMed
42.
go back to reference Wang B, Li D, Sidler C, Rodriguez-Juarez R, Singh N, Heyns M, Ilnytskyy Y, et al. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget. 2015;6(12):9937–50.PubMedPubMedCentral Wang B, Li D, Sidler C, Rodriguez-Juarez R, Singh N, Heyns M, Ilnytskyy Y, et al. A suppressive role of ionizing radiation-responsive miR-29c in the development of liver carcinoma via targeting WIP1. Oncotarget. 2015;6(12):9937–50.PubMedPubMedCentral
43.
go back to reference Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2014;33:2557–67.CrossRefPubMed Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2014;33:2557–67.CrossRefPubMed
44.
go back to reference Ren W, Qiang C, Gao L, et al. Circulating microRNA-21 (MIR-21) and phosphatase and tensin homolog (PTEN) are promising novel biomarkers for detection of oral squamous cell carcinoma. Biomarkers. 2014;19:590–6.CrossRefPubMed Ren W, Qiang C, Gao L, et al. Circulating microRNA-21 (MIR-21) and phosphatase and tensin homolog (PTEN) are promising novel biomarkers for detection of oral squamous cell carcinoma. Biomarkers. 2014;19:590–6.CrossRefPubMed
45.
go back to reference Zhou L, Jiang F, Chen X, Liu Z, Ouyang Y, Zhao W, et al. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett. 2016;12(6):4419–26.CrossRefPubMedPubMedCentral Zhou L, Jiang F, Chen X, Liu Z, Ouyang Y, Zhao W, et al. Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett. 2016;12(6):4419–26.CrossRefPubMedPubMedCentral
46.
go back to reference Peng F, Zhang Y, Wang R, Zhou W, Zhao Z, Liang H, et al. Identification of differentially expressed miRNAs in individual breast cancer patient and application in personalized medicine. Oncogene. 2016;5(2):e194.CrossRef Peng F, Zhang Y, Wang R, Zhou W, Zhao Z, Liang H, et al. Identification of differentially expressed miRNAs in individual breast cancer patient and application in personalized medicine. Oncogene. 2016;5(2):e194.CrossRef
47.
go back to reference Gao L, Ren W, Zhang L, Li S, Kong X, Zhang H, et al. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol Carcinog. 2017;56:1322–34.CrossRefPubMed Gao L, Ren W, Zhang L, Li S, Kong X, Zhang H, et al. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol Carcinog. 2017;56:1322–34.CrossRefPubMed
48.
go back to reference Sun MM, Zhang MZ, Chen Y, Li SL, Zhang W, Ya GW, Chen KS. Effect of PTEN antisense oligonucleotide on oesophageal squamous cell carcinoma cell lines. J Int Med Res. 2012;40:2098–108.CrossRefPubMed Sun MM, Zhang MZ, Chen Y, Li SL, Zhang W, Ya GW, Chen KS. Effect of PTEN antisense oligonucleotide on oesophageal squamous cell carcinoma cell lines. J Int Med Res. 2012;40:2098–108.CrossRefPubMed
49.
go back to reference Xue Q, Sun K, Deng HJ, Lei ST, Dong JQ, Li GX. Anti-miRNA-221 sensitizes human colorectal carcinoma cells to radiation by upregulating PTEN. World J Gastroentero. 2013;19:9307–17.CrossRef Xue Q, Sun K, Deng HJ, Lei ST, Dong JQ, Li GX. Anti-miRNA-221 sensitizes human colorectal carcinoma cells to radiation by upregulating PTEN. World J Gastroentero. 2013;19:9307–17.CrossRef
50.
go back to reference Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, Zhang Y, Hua S, Fu Q, Zhao M, et al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras ERK signaling in oral squamous cell carcinoma. Cell Death Dis. 2014;5:e1155.CrossRefPubMedPubMedCentral Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, Zhang Y, Hua S, Fu Q, Zhao M, et al. Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras ERK signaling in oral squamous cell carcinoma. Cell Death Dis. 2014;5:e1155.CrossRefPubMedPubMedCentral
51.
go back to reference Shah S, Jajal D, Mishra G, Kalia K. Genetic profile of PTEN gene in Indian oral squamous cell carcinoma primary tumors. J Oral Pathol Med. 2017;46:106–11.CrossRefPubMed Shah S, Jajal D, Mishra G, Kalia K. Genetic profile of PTEN gene in Indian oral squamous cell carcinoma primary tumors. J Oral Pathol Med. 2017;46:106–11.CrossRefPubMed
52.
go back to reference Pampalakis G, Diamandis EP, Katsaros D, Sotiropoulou G. Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem. 2010;43:324–7.CrossRefPubMed Pampalakis G, Diamandis EP, Katsaros D, Sotiropoulou G. Down-regulation of dicer expression in ovarian cancer tissues. Clin Biochem. 2010;43:324–7.CrossRefPubMed
53.
go back to reference Slade I, Bacchelli C, Davies H, et al. DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet. 2011;48:273–8.CrossRefPubMed Slade I, Bacchelli C, Davies H, et al. DICER1 syndrome: clarifying the diagnosis, clinical features and management implications of a pleiotropic tumour predisposition syndrome. J Med Genet. 2011;48:273–8.CrossRefPubMed
54.
go back to reference Bahubeshi A, Tischkowitz M, Foulkes WD. miRNA processing and human cancer: DICER1 cuts the mustard. Sci Transl Med. 2011;3:111ps146.CrossRef Bahubeshi A, Tischkowitz M, Foulkes WD. miRNA processing and human cancer: DICER1 cuts the mustard. Sci Transl Med. 2011;3:111ps146.CrossRef
55.
go back to reference Conlon N, Schultheis AM, Piscuoglio S. A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod Pathol. 2015;28:1603–12.CrossRefPubMedPubMedCentral Conlon N, Schultheis AM, Piscuoglio S. A survey of DICER1 hotspot mutations in ovarian and testicular sex cord-stromal tumors. Mod Pathol. 2015;28:1603–12.CrossRefPubMedPubMedCentral
56.
go back to reference Shan W, Sun C, Zhou B, Guo E, Lu H, Xia M, et al. Role of dicer as a prognostic predictor for survival in cancer patients: a systematic review with a meta-analysis. Oncotarget. 2016;7(45):72672.CrossRefPubMedPubMedCentral Shan W, Sun C, Zhou B, Guo E, Lu H, Xia M, et al. Role of dicer as a prognostic predictor for survival in cancer patients: a systematic review with a meta-analysis. Oncotarget. 2016;7(45):72672.CrossRefPubMedPubMedCentral
57.
go back to reference Wu BH, Xiong XP, Jia J, et al. MicroRNAs: new actors in the oral cancer scene. Oral Oncol. 2011;47:314–9.CrossRefPubMed Wu BH, Xiong XP, Jia J, et al. MicroRNAs: new actors in the oral cancer scene. Oral Oncol. 2011;47:314–9.CrossRefPubMed
58.
go back to reference Kawahara K, Nakayama H, Nagata M, Yoshida R, Hirosue A, Tanaka T, et al. A low dicer expression is associated with resistance to 5-FU-based chemoradiotherapy and a shorter overall survival in patients with oral squamous cell carcinoma. J Oral Pathol Med. 2014;43(5):350–6.CrossRefPubMed Kawahara K, Nakayama H, Nagata M, Yoshida R, Hirosue A, Tanaka T, et al. A low dicer expression is associated with resistance to 5-FU-based chemoradiotherapy and a shorter overall survival in patients with oral squamous cell carcinoma. J Oral Pathol Med. 2014;43(5):350–6.CrossRefPubMed
59.
go back to reference Cantini LP, Andino LM, Attaway CC, Butler B, Dumitriu A, Blackshaw A, et al. Identification and characterization of Dicer1e, a Dicer1 protein variant, in oral cancer cells. Mol Cancer. 2014;13(1):190.CrossRefPubMedPubMedCentral Cantini LP, Andino LM, Attaway CC, Butler B, Dumitriu A, Blackshaw A, et al. Identification and characterization of Dicer1e, a Dicer1 protein variant, in oral cancer cells. Mol Cancer. 2014;13(1):190.CrossRefPubMedPubMedCentral
60.
go back to reference Lin PL, Wu DW, Huang CC, He TY, Chou MC, Sheu GT, et al. MicroRNA-21 promotes tumour malignancy via increased nuclear translocation of β-catenin and predicts poor outcome in APC-mutated but not in APC-wild-type colorectal cancer. Carcinogenesis. 2014;35(10):2175–82. Lin PL, Wu DW, Huang CC, He TY, Chou MC, Sheu GT, et al. MicroRNA-21 promotes tumour malignancy via increased nuclear translocation of β-catenin and predicts poor outcome in APC-mutated but not in APC-wild-type colorectal cancer. Carcinogenesis. 2014;35(10):2175–82.
61.
go back to reference Valeri N, Braconi C, Gasparini P, Hart J, Grivennikov S, Lovat F, et al. microRNA-135b promotes cancer progression acting as a downstream effector of oncogenic pathways in colon cancer. Lancet. 2013;381:S17.CrossRef Valeri N, Braconi C, Gasparini P, Hart J, Grivennikov S, Lovat F, et al. microRNA-135b promotes cancer progression acting as a downstream effector of oncogenic pathways in colon cancer. Lancet. 2013;381:S17.CrossRef
62.
go back to reference Xin H, Jiang D, Lü Z, Sun S, Kong J, Li F. Effect of miRNA-135b on proliferation, invasion and migration of triple-negative breast cancer by targeting APC. Zhonghua Yi Xue Za Zhi. 2015;95(30):2474–7.PubMed Xin H, Jiang D, Lü Z, Sun S, Kong J, Li F. Effect of miRNA-135b on proliferation, invasion and migration of triple-negative breast cancer by targeting APC. Zhonghua Yi Xue Za Zhi. 2015;95(30):2474–7.PubMed
63.
go back to reference Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68:5795–802.CrossRefPubMed Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008;68:5795–802.CrossRefPubMed
64.
go back to reference Pérez-Sayáns M, Suárez-Peñaranda JM, Herranz-Carnero M, Gayoso-Diz P, Barros-Angueira F, Gándara-Rey JM, García-García A. The role of the adenomatous polyposis coli (APC) in oral squamous cell carcinoma. Oral Oncol. 2012;48:56–60.CrossRefPubMed Pérez-Sayáns M, Suárez-Peñaranda JM, Herranz-Carnero M, Gayoso-Diz P, Barros-Angueira F, Gándara-Rey JM, García-García A. The role of the adenomatous polyposis coli (APC) in oral squamous cell carcinoma. Oral Oncol. 2012;48:56–60.CrossRefPubMed
65.
go back to reference Strzelczyk JK, Gołąbek K, Krakowczyk Ł, Owczarek AJ. Expression profiles of MGMT, p16, and APC genes in tumor and matching surgical margin from patients with oral squamous cell carcinoma. Acta Biochim Pol. 2016;63(3):505–9. Strzelczyk JK, Gołąbek K, Krakowczyk Ł, Owczarek AJ. Expression profiles of MGMT, p16, and APC genes in tumor and matching surgical margin from patients with oral squamous cell carcinoma. Acta Biochim Pol. 2016;63(3):505–9.
66.
go back to reference Resemann HK, Watson CJ, Lloyd-Lewis B. The Stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol. 2014;382:603–11.CrossRefPubMed Resemann HK, Watson CJ, Lloyd-Lewis B. The Stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol. 2014;382:603–11.CrossRefPubMed
67.
go back to reference Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.CrossRefPubMed Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007;7:41–51.CrossRefPubMed
68.
go back to reference He G, Karin M. NF-κB and STAT3 - key players in liver inflammation and cancer. Cell Res. 2011;21:159–68.CrossRefPubMed He G, Karin M. NF-κB and STAT3 - key players in liver inflammation and cancer. Cell Res. 2011;21:159–68.CrossRefPubMed
69.
go back to reference Grandis JR, Drenning SD, Zeng Q, et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci. 2000;97:4227–32.CrossRefPubMed Grandis JR, Drenning SD, Zeng Q, et al. Constitutive activation of Stat3 signaling abrogates apoptosis in squamous cell carcinogenesis in vivo. Proc Natl Acad Sci. 2000;97:4227–32.CrossRefPubMed
70.
go back to reference Bourguignon LY, Earle C, Wong G, et al. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene. 2012;31:149–60.CrossRefPubMed Bourguignon LY, Earle C, Wong G, et al. Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells. Oncogene. 2012;31:149–60.CrossRefPubMed
71.
go back to reference Wang YY, Sun G, Luo H, et al. MiR-21 modulates hTERT through a STAT3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther. 2012;18:722–8.CrossRefPubMed Wang YY, Sun G, Luo H, et al. MiR-21 modulates hTERT through a STAT3-dependent manner on glioblastoma cell growth. CNS Neurosci Ther. 2012;18:722–8.CrossRefPubMed
Metadata
Title
Differential expression of hsa-miR-221, hsa-miR-21, hsa-miR-135b, and hsa-miR-29c suggests a field effect in oral cancer
Authors
Camile B. Lopes
Leandro L. Magalhães
Carolina R. Teófilo
Ana Paula N. N. Alves
Raquel C. Montenegro
Massimo Negrini
Ândrea Ribeiro-dos-Santos
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4631-z

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine