Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

MALBAC-based chromosomal imbalance analysis: a novel technique enabling effective non-invasive diagnosis and monitoring of bladder cancer

Authors: Hao Liu, Wang He, Bo Wang, Kewei Xu, Jinli Han, Junjiong Zheng, Jun Ren, Lin Shao, Shiping Bo, Sijia Lu, Tianxin Lin, Jian Huang

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

The gold standard for bladder cancer detection is cystoscopy, which is an invasive procedure that causes discomfort in patients. The currently available non-invasive approaches either show limited sensitivity in low-grade tumours or possess unsatisfying specificity. The aim of the present study is to develop a new non-invasive strategy based on chromosomal imbalance levels to detect bladder cancer effectively.

Methods

We enrolled 74 patients diagnosed with bladder cancer (BC), 51 healthy participants and 27 patients who were diagnosed with non-malignant urinary disease (UD). The Chromosomal Imbalance Analysis (CIA) was conducted in the tumours and urine of participants via the multiple annealing and looping-based amplification cycles-next-generation sequencing (MALBAC-NGS) strategy. The threshold of the CIA was determined with the receiver operating characteristic (ROC) curve. The comparison of the CIA with voided urine cytology was also performed in a subgroup of 55 BC patients. The consistency and discrepancy of the different assays were studied with the Kappa analysis and the McNemar test, respectively. The performance of the urinary CIA was also validated in an additional group of 120 BC patients, 15 UD and 45 healthy participants.

Results

Good concordance (87.0%) in the assessments of patient tumour tissues and urine was observed. The urine-based evaluation also demonstrated a good performance (accuracy = 89.0%, sensitivity = 83.1%, specificity = 94.5%, NPV = 85.4% and PPV = 93.7%; AUC = 0.917, 95%CI =0.868–0.966, P < 0.001) in the training group, particularly in the patients with CIA-positive tumours (accuracy = 92.7%, sensitivity = 89.8%). The sensitivity and specificity in the validation group were 89.2 and 90.0%, respectively. Even in Ta/T1 and low-grade tumour patients, the sensitivity was 85–90%. The CIA also exhibited a significantly improved sensitivity compared to voided urine cytology.

Conclusions

This is the first study employing the concept of whole genome imbalance combined with the MALBAC technique to detect bladder cancer in urine. MALBAC-CIA yielded significant diagnostic power, even in early-stage/low-grade tumour patients, and it may be used as a non-invasive approach for diagnosis and recurrence surveillance in bladder cancer prior to the use of cystoscopy, which would largely reduce the burden on patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Lotan Y, OʼSullivan P, Raman JD, et al. Clinical comparison of noninvasive urine tests for ruling out recurrent urothelial carcinoma. Urol Oncol. 2017;35:531.CrossRefPubMed Lotan Y, OʼSullivan P, Raman JD, et al. Clinical comparison of noninvasive urine tests for ruling out recurrent urothelial carcinoma. Urol Oncol. 2017;35:531.CrossRefPubMed
3.
go back to reference Goodison S, Rosser CJ, Urquidi V. Bladder cancer detection and monitoring: assessment of urine- and blood-based marker tests. Mol Diagn Ther. 2013;17(2):71–84.CrossRefPubMedPubMedCentral Goodison S, Rosser CJ, Urquidi V. Bladder cancer detection and monitoring: assessment of urine- and blood-based marker tests. Mol Diagn Ther. 2013;17(2):71–84.CrossRefPubMedPubMedCentral
4.
go back to reference Schmitz-Dräger BJ, Droller M, Lokeshwar VB, et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD consensus. Urol Int. 2015;94(1):1–24.CrossRefPubMed Schmitz-Dräger BJ, Droller M, Lokeshwar VB, et al. Molecular markers for bladder cancer screening, early diagnosis, and surveillance: the WHO/ICUD consensus. Urol Int. 2015;94(1):1–24.CrossRefPubMed
8.
9.
go back to reference Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154.CrossRefPubMedPubMedCentral Leary RJ, Sausen M, Kinde I, et al. Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl Med. 2012;4(162):162ra154.CrossRefPubMedPubMedCentral
10.
12.
go back to reference Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.CrossRefPubMedPubMedCentral Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.CrossRefPubMedPubMedCentral
13.
go back to reference Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7(4):233–45.CrossRefPubMed Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7(4):233–45.CrossRefPubMed
14.
go back to reference Campbell PJ, Stephens PJ, Pleasance ED, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet. 2008;40(6):722–9.CrossRefPubMedPubMedCentral Campbell PJ, Stephens PJ, Pleasance ED, et al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat Genet. 2008;40(6):722–9.CrossRefPubMedPubMedCentral
15.
17.
go back to reference Gomella LG, Mann MJ, Cleary RC, et al. Fluorescence in situ hybridization (FISH) in the diagnosis of bladder and upper tract urothelial carcinoma: the largest single-institution experience to date. Can J Urol. 2017;24(1):8620–6.PubMed Gomella LG, Mann MJ, Cleary RC, et al. Fluorescence in situ hybridization (FISH) in the diagnosis of bladder and upper tract urothelial carcinoma: the largest single-institution experience to date. Can J Urol. 2017;24(1):8620–6.PubMed
18.
go back to reference Lavery HJ, Zaharieva B, McFaddin A, Heerema N. Pohar KS. A prospective comparison of UroVysion FISH and urine cytology in bladder cancer detection. BMC Cancer. 2017;17(1):247.CrossRefPubMedPubMedCentral Lavery HJ, Zaharieva B, McFaddin A, Heerema N. Pohar KS. A prospective comparison of UroVysion FISH and urine cytology in bladder cancer detection. BMC Cancer. 2017;17(1):247.CrossRefPubMedPubMedCentral
21.
go back to reference van Kessel KE, Beukers W, Lurkin I, et al. Validation of a DNA methylation-mutation urine assay to select patients with hematuria for cystoscopy. J Urol. 2017;197(3 Pt 1):590–5.CrossRefPubMed van Kessel KE, Beukers W, Lurkin I, et al. Validation of a DNA methylation-mutation urine assay to select patients with hematuria for cystoscopy. J Urol. 2017;197(3 Pt 1):590–5.CrossRefPubMed
23.
go back to reference Chen C, Qi XJ, Cao YW, et al. Bladder tumor heterogeneity: the impact on clinical treatment. Urol Int. 2015;95(1):1–8.CrossRefPubMed Chen C, Qi XJ, Cao YW, et al. Bladder tumor heterogeneity: the impact on clinical treatment. Urol Int. 2015;95(1):1–8.CrossRefPubMed
24.
go back to reference Xia S, Kohli M, Du M, et al. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer. Oncotarget. 2015;6(18):16411–21.CrossRefPubMedPubMedCentral Xia S, Kohli M, Du M, et al. Plasma genetic and genomic abnormalities predict treatment response and clinical outcome in advanced prostate cancer. Oncotarget. 2015;6(18):16411–21.CrossRefPubMedPubMedCentral
25.
go back to reference Xia Y, Huang CC, Dittmar R, et al. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget. 2016;7(24):35818–31.CrossRefPubMedPubMedCentral Xia Y, Huang CC, Dittmar R, et al. Copy number variations in urine cell free DNA as biomarkers in advanced prostate cancer. Oncotarget. 2016;7(24):35818–31.CrossRefPubMedPubMedCentral
26.
go back to reference Heitzer E, Ulz P, Belic J, et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 2013;5(4):30.CrossRefPubMedPubMedCentral Heitzer E, Ulz P, Belic J, et al. Tumor-associated copy number changes in the circulation of patients with prostate cancer identified through whole-genome sequencing. Genome Med. 2013;5(4):30.CrossRefPubMedPubMedCentral
27.
go back to reference Lu S, Zong C, Fan W, et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338(6114):1627–30.CrossRefPubMedPubMedCentral Lu S, Zong C, Fan W, et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science. 2012;338(6114):1627–30.CrossRefPubMedPubMedCentral
30.
31.
go back to reference Iyer G, Al-Ahmadie H, Schultz N, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013;31(25):3133–40.CrossRefPubMedPubMedCentral Iyer G, Al-Ahmadie H, Schultz N, et al. Prevalence and co-occurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol. 2013;31(25):3133–40.CrossRefPubMedPubMedCentral
32.
go back to reference Al-Ahmadie HA, Iyer G, Janakiraman M, et al. Somatic mutation of fibroblast growth factor receptor-3 (FGFR3) defines a distinct morphological subtype of high-grade urothelial carcinoma. J Pathol. 2011;224(2):270–9.CrossRefPubMedPubMedCentral Al-Ahmadie HA, Iyer G, Janakiraman M, et al. Somatic mutation of fibroblast growth factor receptor-3 (FGFR3) defines a distinct morphological subtype of high-grade urothelial carcinoma. J Pathol. 2011;224(2):270–9.CrossRefPubMedPubMedCentral
34.
go back to reference Ross JS, Wang K, Al-Rohil RN, et al. Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod Pathol. 2014;27(2):271–80.CrossRefPubMed Ross JS, Wang K, Al-Rohil RN, et al. Advanced urothelial carcinoma: next-generation sequencing reveals diverse genomic alterations and targets of therapy. Mod Pathol. 2014;27(2):271–80.CrossRefPubMed
Metadata
Title
MALBAC-based chromosomal imbalance analysis: a novel technique enabling effective non-invasive diagnosis and monitoring of bladder cancer
Authors
Hao Liu
Wang He
Bo Wang
Kewei Xu
Jinli Han
Junjiong Zheng
Jun Ren
Lin Shao
Shiping Bo
Sijia Lu
Tianxin Lin
Jian Huang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4571-7

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine