Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Gene expression profile and cancer-associated pathways linked to progesterone receptor isoform a (PRA) predominance in transgenic mouse mammary glands

Authors: María José Carlini, María Sol Recouvreux, Marina Simian, Maria Aparecida Nagai

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Progesterone receptor (PR) is expressed from a single gene as two isoforms, PRA and PRB. In normal breast human tissue, PRA and PRB are expressed in equimolar ratios, but isoform ratio is altered during malignant progression, usually leading to high PRA:PRB ratios. We took advantage of a transgenic mouse model where PRA isoform is predominant (PRA transgenics) and identified the key transcriptional events and associated pathways underlying the preneoplastic phenotype in mammary glands of PRA transgenics as compared with normal wild-type littermates.

Methods

The transcriptomic profiles of PRA transgenics and wild-type mammary glands were generated using microarray technology. We identified differentially expressed genes and analyzed clustering, gene ontology (GO), gene set enrichment analysis (GSEA), and pathway profiles. We also performed comparisons with publicly available gene expression data sets of human breast cancer.

Results

We identified a large number of differentially expressed genes which were mainly associated with metabolic pathways for the PRA transgenics phenotype while inflammation- related pathways were negatively correlated. Further, we determined a significant overlap of the pathways characterizing PRA transgenics and those in breast cancer subtypes Luminal A and Luminal B and identified novel putative biomarkers, such as PDHB and LAMB3.

Conclusion

The transcriptional targets identified in this study should facilitate the formulation or refinement of useful molecular descriptors for diagnosis, prognosis, and therapy of breast cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Brisken C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer. 2013;13(6):385–96.CrossRefPubMed Brisken C. Progesterone signalling in breast cancer: a neglected hormone coming into the limelight. Nat Rev Cancer. 2013;13(6):385–96.CrossRefPubMed
3.
go back to reference Sørlie T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedPubMedCentral Sørlie T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.CrossRefPubMedPubMedCentral
4.
go back to reference Perou CM, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A. Aug. 1999;96(16):9212–7.CrossRefPubMedPubMedCentral Perou CM, et al. Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc Natl Acad Sci U S A. Aug. 1999;96(16):9212–7.CrossRefPubMedPubMedCentral
5.
go back to reference Cuzick J, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–8.CrossRefPubMed Cuzick J, et al. Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the genomic health recurrence score in early breast cancer. J Clin Oncol. 2011;29(32):4273–8.CrossRefPubMed
6.
go back to reference Graham JD, et al. Characterization of progesterone receptor a and B expression in human breast cancer. Cancer Res. 1995;55(21):5063–8.PubMed Graham JD, et al. Characterization of progesterone receptor a and B expression in human breast cancer. Cancer Res. 1995;55(21):5063–8.PubMed
7.
go back to reference a Hopp T, et al. Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res. 2004;10(8):2751–60.CrossRefPubMed a Hopp T, et al. Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res. 2004;10(8):2751–60.CrossRefPubMed
8.
go back to reference Mote PA, et al. Progesterone receptor a predominance is a discriminator of benefit from endocrine therapy in the ATAC trial. Breast Cancer Res Treat. 2015;151(2):309–18.CrossRefPubMed Mote PA, et al. Progesterone receptor a predominance is a discriminator of benefit from endocrine therapy in the ATAC trial. Breast Cancer Res Treat. 2015;151(2):309–18.CrossRefPubMed
9.
go back to reference Wargon V, et al. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the. 2014;0:1–13. Wargon V, et al. Progestin and antiprogestin responsiveness in breast cancer is driven by the PRA/PRB ratio via AIB1 or SMRT recruitment to the. 2014;0:1–13.
10.
go back to reference Rojas PA, et al. Progesterone receptor isoform ratio: a breast Cancer prognostic and predictive factor for Antiprogestin responsiveness. JNCI J Natl Cancer Inst. Jul. 2017;109(7). Rojas PA, et al. Progesterone receptor isoform ratio: a breast Cancer prognostic and predictive factor for Antiprogestin responsiveness. JNCI J Natl Cancer Inst. Jul. 2017;109(7).
11.
go back to reference Graham JD, Yager ML, Hill HD, Byth K, O’Neill GM, Clarke CL. Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol. 2005;19(11):2713–35.CrossRefPubMed Graham JD, Yager ML, Hill HD, Byth K, O’Neill GM, Clarke CL. Altered progesterone receptor isoform expression remodels progestin responsiveness of breast cancer cells. Mol Endocrinol. 2005;19(11):2713–35.CrossRefPubMed
12.
go back to reference Chalbos D, Galtier F. Differential effect of forms a and B of human progesterone receptor on estradiol-dependent transcription. J Biol Chem. 1994;269(37):23007–12.PubMed Chalbos D, Galtier F. Differential effect of forms a and B of human progesterone receptor on estradiol-dependent transcription. J Biol Chem. 1994;269(37):23007–12.PubMed
13.
go back to reference Shyamala G, Yang X, Silberstein G, Barcellos-Hoff MH, Dale E. Transgenic mice carrying an imbalance in the native ratio of a to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci U S A. 1998;95(2):696–701.CrossRefPubMedPubMedCentral Shyamala G, Yang X, Silberstein G, Barcellos-Hoff MH, Dale E. Transgenic mice carrying an imbalance in the native ratio of a to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci U S A. 1998;95(2):696–701.CrossRefPubMedPubMedCentral
14.
go back to reference Chou Y-C, Uehara N, Lowry JR, Shyamala G. Mammary epithelial cells of PR-A transgenic mice exhibit distinct alterations in gene expression and growth potential associated with transformation. Carcinogenesis. 2003;24(3):403–9.CrossRefPubMed Chou Y-C, Uehara N, Lowry JR, Shyamala G. Mammary epithelial cells of PR-A transgenic mice exhibit distinct alterations in gene expression and growth potential associated with transformation. Carcinogenesis. 2003;24(3):403–9.CrossRefPubMed
15.
go back to reference Simian M, Bissell MJ, Barcellos-Hoff MH, Shyamala G. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice. Breast Cancer Res. 2009;11(5):R72.CrossRefPubMedPubMedCentral Simian M, Bissell MJ, Barcellos-Hoff MH, Shyamala G. Estrogen and progesterone receptors have distinct roles in the establishment of the hyperplastic phenotype in PR-A transgenic mice. Breast Cancer Res. 2009;11(5):R72.CrossRefPubMedPubMedCentral
16.
go back to reference Medina D. Biological and molecular characteristics of the premalignant mouse mammary gland. Biochim Biophys Acta. 2002;1603:1–9.PubMed Medina D. Biological and molecular characteristics of the premalignant mouse mammary gland. Biochim Biophys Acta. 2002;1603:1–9.PubMed
17.
go back to reference Mote PA, Bartow S, Tran N, Clarke CL. Loss of co-ordinate expression of progesterone receptors a and B is an early event in breast carcinogenesis. Breast Cancer Res Treat. 2002;72(2):163–72.CrossRefPubMed Mote PA, Bartow S, Tran N, Clarke CL. Loss of co-ordinate expression of progesterone receptors a and B is an early event in breast carcinogenesis. Breast Cancer Res Treat. 2002;72(2):163–72.CrossRefPubMed
18.
go back to reference Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.CrossRefPubMed Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.CrossRefPubMed
19.
go back to reference Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.CrossRefPubMed Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.CrossRefPubMed
20.
go back to reference Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.CrossRefPubMedPubMedCentral Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50.CrossRefPubMedPubMedCentral
21.
go back to reference Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One. 2010;5(11) Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One. 2010;5(11)
22.
23.
24.
go back to reference Cerami E, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed Cerami E, et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. Cancer Discov. 2012;2(5):401–4.CrossRefPubMed
25.
go back to reference J. Gao et al.., “Integrative analysis of complex Cancer genomics and clinical profiles using the cBioPortal,” Sci Signal, vol. 6, no. 269, p. pl1-pl1, 2013. J. Gao et al.., “Integrative analysis of complex Cancer genomics and clinical profiles using the cBioPortal,” Sci Signal, vol. 6, no. 269, p. pl1-pl1, 2013.
26.
go back to reference Khan J a, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. Differential regulation of breast Cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast Cancer cell line. PLoS One. 2012;7(9) Khan J a, Bellance C, Guiochon-Mantel A, Lombès M, Loosfelt H. Differential regulation of breast Cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast Cancer cell line. PLoS One. 2012;7(9)
27.
go back to reference Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database Hallmark gene set collection. Cell Syst. 2015;1(6):417–25.CrossRefPubMedPubMedCentral Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database Hallmark gene set collection. Cell Syst. 2015;1(6):417–25.CrossRefPubMedPubMedCentral
28.
go back to reference Nikolsky Y, et al. Genome-wide functional synergy between amplified and mutated genes in human breast cancer. Cancer Res. 2008;68(22):9532–40.CrossRefPubMed Nikolsky Y, et al. Genome-wide functional synergy between amplified and mutated genes in human breast cancer. Cancer Res. 2008;68(22):9532–40.CrossRefPubMed
30.
go back to reference Porter D, et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 2003;1(5):362–75.PubMed Porter D, et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 2003;1(5):362–75.PubMed
31.
go back to reference Szász AM, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget. 2016;7(31):49322–33.CrossRefPubMedPubMedCentral Szász AM, et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget. 2016;7(31):49322–33.CrossRefPubMedPubMedCentral
32.
go back to reference Jacobsen BM, a Schittone S, Richer JK, Horwitz KB. Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology. Mol Endocrinol. 2005;19(3):574–87.CrossRefPubMed Jacobsen BM, a Schittone S, Richer JK, Horwitz KB. Progesterone-independent effects of human progesterone receptors (PRs) in estrogen receptor-positive breast cancer: PR isoform-specific gene regulation and tumor biology. Mol Endocrinol. 2005;19(3):574–87.CrossRefPubMed
33.
go back to reference Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002;277(7):5209–18.CrossRefPubMed Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002;277(7):5209–18.CrossRefPubMed
34.
go back to reference Turashvili G, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer. 2007;7(1):55.CrossRefPubMedPubMedCentral Turashvili G, et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer. 2007;7(1):55.CrossRefPubMedPubMedCentral
35.
go back to reference Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.CrossRefPubMed Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008;68(10):3645–54.CrossRefPubMed
36.
37.
go back to reference Ben-Porath I, et al. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507.CrossRefPubMedPubMedCentral Ben-Porath I, et al. An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 2008;40(5):499–507.CrossRefPubMedPubMedCentral
38.
go back to reference Healey MA, et al. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the nurses??? Health Study. Breast Cancer Res Treat. 2014;147(3):639–51.CrossRefPubMed Healey MA, et al. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the nurses??? Health Study. Breast Cancer Res Treat. 2014;147(3):639–51.CrossRefPubMed
39.
go back to reference Simões RV, et al. Metabolic plasticity of metastatic breast Cancer cells: adaptation to changes in the microenvironment. Neoplasia. 2015;17(8):671–84.CrossRefPubMedPubMedCentral Simões RV, et al. Metabolic plasticity of metastatic breast Cancer cells: adaptation to changes in the microenvironment. Neoplasia. 2015;17(8):671–84.CrossRefPubMedPubMedCentral
40.
go back to reference Hardy DB, Janowski BA, Chen C-C, Mendelson CR. Progesterone receptor inhibits aromatase and inflammatory response pathways in breast Cancer cells via ligand-dependent and ligand-independent mechanisms. Mol Endocrinol. 2008;22(8):1812–24.CrossRefPubMedPubMedCentral Hardy DB, Janowski BA, Chen C-C, Mendelson CR. Progesterone receptor inhibits aromatase and inflammatory response pathways in breast Cancer cells via ligand-dependent and ligand-independent mechanisms. Mol Endocrinol. 2008;22(8):1812–24.CrossRefPubMedPubMedCentral
41.
go back to reference D. B. Hardy, B. a Janowski, D. R. Corey, and C. R. Mendelson, “Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression.,” Mol Endocrinol, vol. 20, no. 11, pp. 2724–2733, 2006. D. B. Hardy, B. a Janowski, D. R. Corey, and C. R. Mendelson, “Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression.,” Mol Endocrinol, vol. 20, no. 11, pp. 2724–2733, 2006.
42.
go back to reference Fleisch MC, Chou YC, Cardiff RD, Asaithambi A, Shyamala G. Overexpression of progesterone receptor a isoform in mice leads to endometrial hyperproliferation, hyperplasia and atypia. Mol Hum Reprod. 2009;15(4):241–9.CrossRefPubMedPubMedCentral Fleisch MC, Chou YC, Cardiff RD, Asaithambi A, Shyamala G. Overexpression of progesterone receptor a isoform in mice leads to endometrial hyperproliferation, hyperplasia and atypia. Mol Hum Reprod. 2009;15(4):241–9.CrossRefPubMedPubMedCentral
Metadata
Title
Gene expression profile and cancer-associated pathways linked to progesterone receptor isoform a (PRA) predominance in transgenic mouse mammary glands
Authors
María José Carlini
María Sol Recouvreux
Marina Simian
Maria Aparecida Nagai
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4550-z

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine