Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Study protocol

BioPro-RCMI-1505 trial: multicenter study evaluating the use of a biodegradable balloon for the treatment of intermediate risk prostate cancer by intensity modulated radiotherapy; study protocol

Authors: David Pasquier, Emilie Bogart, François Bonodeau, Thomas Lacornerie, Eric Lartigau, Igor Latorzeff

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Prospective trials have demonstrated the advantage of dose-escalated radiotherapy for the biochemical and clinical control of intermediate risk prostate cancer. Dose escalation improves outcomes but increases risks of urinary and bowel toxicity. Recently the contribution of “spacers” positioned in the septum between the rectum and the prostate could improve the functional results of intensity modulated radiation therapy (IMRT). To date most of the evaluated devices were polyethylen glycol (PEG) and hyaluronic acid (HA). Men on the Spacer arm had decreased bowel toxicity and less decline in both urinary and bowel quality of life as compared to Control men in a randomized trial.

Methods

This is an interventional, multi-center study to evaluate the use of biodegradable inflatable balloon for patients with intermediate risk prostate cancer treated by IMRT (74 to 80 Gy, 2 Gy/fraction) with daily image guided radiotherapy.

Discussion

This multicenter prospective study will yield new data regarding dosimetric gain and implantation stages of Bioprotect balloon. Acute and late toxicities and quality of life will be registered too.

Trial registration

NCT02478112, date of registration: 15/06/2015.
Literature
1.
go back to reference Zelefsky MJ, Pei X, Chou JF, Schechter M, Kollmeier M, Cox B, et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol. 2011;60(6):1133–9.CrossRefPubMed Zelefsky MJ, Pei X, Chou JF, Schechter M, Kollmeier M, Cox B, et al. Dose escalation for prostate cancer radiotherapy: predictors of long-term biochemical tumor control and distant metastases-free survival outcomes. Eur Urol. 2011;60(6):1133–9.CrossRefPubMed
2.
go back to reference Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353:267–72.CrossRefPubMed Dearnaley DP, Khoo VS, Norman AR, Meyer L, Nahum A, Tait D, et al. Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet. 1999;353:267–72.CrossRefPubMed
3.
go back to reference Beckendorf V, Guerif S, Le Prisé E, Cosset J-M, Bougnoux A, Chauvet B, et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys. 2011;80:1056–63.CrossRefPubMed Beckendorf V, Guerif S, Le Prisé E, Cosset J-M, Bougnoux A, Chauvet B, et al. 70 Gy versus 80 Gy in localized prostate cancer: 5-year results of GETUG 06 randomized trial. Int J Radiat Oncol Biol Phys. 2011;80:1056–63.CrossRefPubMed
4.
go back to reference Peeters ST, Heemsbergen WD, Koper PC, van Putten WL, Slot A, Dielwart MF, et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol. 2006;24:1990–6.CrossRefPubMed Peeters ST, Heemsbergen WD, Koper PC, van Putten WL, Slot A, Dielwart MF, et al. Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol. 2006;24:1990–6.CrossRefPubMed
5.
go back to reference Cahlon O, Hunt M, Zelefsky MJ. Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol. 2008;18:48–57.CrossRefPubMed Cahlon O, Hunt M, Zelefsky MJ. Intensity-modulated radiation therapy: supportive data for prostate cancer. Semin Radiat Oncol. 2008;18:48–57.CrossRefPubMed
6.
go back to reference Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84:125–9.CrossRefPubMed Zelefsky MJ, Kollmeier M, Cox B, Fidaleo A, Sperling D, Pei X, et al. Improved clinical outcomes with high-dose image guided radiotherapy compared with non-IGRT for the treatment of clinically localized prostate cancer. Int J Radiat Oncol Biol Phys. 2012;84:125–9.CrossRefPubMed
7.
go back to reference Huang EH, Pollack A, Levy L, Starkschall G, Dong L, Rosen I, et al. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2002;54:1314–21.CrossRefPubMed Huang EH, Pollack A, Levy L, Starkschall G, Dong L, Rosen I, et al. Late rectal toxicity: dose-volume effects of conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2002;54:1314–21.CrossRefPubMed
8.
go back to reference Mok G, Benz E, Vallee J-P, Miralbell R, Zilli T. Optimization of radiation therapy techniques for prostate cancer with prostate-rectum spacers: a systematic review. Int J Radiat Oncol Biol Phys. 2014;90:278–88.CrossRefPubMed Mok G, Benz E, Vallee J-P, Miralbell R, Zilli T. Optimization of radiation therapy techniques for prostate cancer with prostate-rectum spacers: a systematic review. Int J Radiat Oncol Biol Phys. 2014;90:278–88.CrossRefPubMed
9.
go back to reference Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D, et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92:971–7.CrossRefPubMed Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, Beyer D, et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2015;92:971–7.CrossRefPubMed
10.
go back to reference Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate RT: final results of a phase III trial. Int J Radiat Oncol Biol Phys. 2017;97:976–85.CrossRefPubMed Hamstra DA, Mariados N, Sylvester J, Shah D, Karsh L, Hudes R, et al. Continued benefit to rectal separation for prostate RT: final results of a phase III trial. Int J Radiat Oncol Biol Phys. 2017;97:976–85.CrossRefPubMed
11.
go back to reference Chapet O, Udrescu C, Tanguy R, Ruffion A, Fenoglietto P, Sotton MP, et al. Dosimetric implications of an injection of hyaluronic acid for preserving the rectal wall in prostate stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;88:425–32.CrossRefPubMed Chapet O, Udrescu C, Tanguy R, Ruffion A, Fenoglietto P, Sotton MP, et al. Dosimetric implications of an injection of hyaluronic acid for preserving the rectal wall in prostate stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2014;88:425–32.CrossRefPubMed
12.
go back to reference Ben-Yosef R, Paz A, Levy Y, Alani S, Muncher Y, Shohat S, et al. A novel device for protecting rectum during prostate cancer irradiation: in vivo data on a large mammal model. J Urol. 2009;181:1401–6.CrossRefPubMed Ben-Yosef R, Paz A, Levy Y, Alani S, Muncher Y, Shohat S, et al. A novel device for protecting rectum during prostate cancer irradiation: in vivo data on a large mammal model. J Urol. 2009;181:1401–6.CrossRefPubMed
13.
go back to reference Gez E, Cytron S, Yosef RB, London D, Corn BW, Alani S, et al. Application of an interstitial and biodegradable balloon system for prostate-rectum separation during prostate cancer radiotherapy: a prospective multi-center study. Radiat Oncol. 2013;8:96.CrossRefPubMedPubMedCentral Gez E, Cytron S, Yosef RB, London D, Corn BW, Alani S, et al. Application of an interstitial and biodegradable balloon system for prostate-rectum separation during prostate cancer radiotherapy: a prospective multi-center study. Radiat Oncol. 2013;8:96.CrossRefPubMedPubMedCentral
14.
go back to reference Melchert C, Gez E, Bohlen G, Scarzello G, Koziol I, Anscher M, et al. Interstitial biodegradable balloon for reduced rectal dose during prostate radiotherapy: results of a virtual planning investigation based on the pre- and post-implant imaging data of an international multicenter study. Radiother Oncol. 2013;106:210–4.CrossRefPubMed Melchert C, Gez E, Bohlen G, Scarzello G, Koziol I, Anscher M, et al. Interstitial biodegradable balloon for reduced rectal dose during prostate radiotherapy: results of a virtual planning investigation based on the pre- and post-implant imaging data of an international multicenter study. Radiother Oncol. 2013;106:210–4.CrossRefPubMed
Metadata
Title
BioPro-RCMI-1505 trial: multicenter study evaluating the use of a biodegradable balloon for the treatment of intermediate risk prostate cancer by intensity modulated radiotherapy; study protocol
Authors
David Pasquier
Emilie Bogart
François Bonodeau
Thomas Lacornerie
Eric Lartigau
Igor Latorzeff
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4492-5

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine