Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Metabolomic profiles in breast cancer:a pilot case-control study in the breast cancer family registry

Authors: Marcelle M. Dougan, Yuqing Li, Lisa W. Chu, Robert W. Haile, Alice S. Whittemore, Summer S. Han, Steven C. Moore, Joshua N. Sampson, Irene L. Andrulis, Esther M. John, Ann W. Hsing

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Metabolomics is emerging as an important tool for detecting differences between diseased and non-diseased individuals. However, prospective studies are limited.

Methods

We examined the detectability, reliability, and distribution of metabolites measured in pre-diagnostic plasma samples in a pilot study of women enrolled in the Northern California site of the Breast Cancer Family Registry. The study included 45 cases diagnosed with breast cancer at least one year after the blood draw, and 45 controls. Controls were matched on age (within 5 years), family status, BRCA status, and menopausal status. Duplicate samples were included for reliability assessment. We used a liquid chromatography/gas chromatography mass spectrometer platform to measure metabolites. We calculated intraclass correlations (ICCs) among duplicate samples, and coefficients of variation (CVs) across metabolites.

Results

Of the 661 named metabolites detected, 338 (51%) were found in all samples, and 490 (74%) in more than 80% of samples. The median ICC between duplicates was 0.96 (25th – 75th percentile: 0.82–0.99). We observed a greater than 20% case-control difference in 24 metabolites (p < 0.05), although these associations were not significant after adjusting for multiple comparisons.

Conclusions

These data show that assays are reproducible for many metabolites, there is a minimal laboratory variation for the same sample, and a large between-person variation. Despite small sample size, differences between cases and controls in some metabolites suggest that a well-powered large-scale study is likely to detect biological meaningful differences to provide a better understanding of breast cancer etiology.
Appendix
Available only for authorised users
Literature
1.
go back to reference Johnson CH, Manna SK, Krausz KW, Bonzo JA, Divelbiss RD, Hollingshead MG, Gonzalez FJ. Global metabolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model. Metabolites. 2013;3(3):658–72.CrossRefPubMedPubMedCentral Johnson CH, Manna SK, Krausz KW, Bonzo JA, Divelbiss RD, Hollingshead MG, Gonzalez FJ. Global metabolomics reveals urinary biomarkers of breast cancer in a mcf-7 xenograft mouse model. Metabolites. 2013;3(3):658–72.CrossRefPubMedPubMedCentral
2.
go back to reference Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong Y-N, Blayney DW, Niland JC, Winer EP, Weeks JC. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the national comprehensive Cancer network. Cancer. 2012;118(22):5463–72.CrossRefPubMedPubMedCentral Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong Y-N, Blayney DW, Niland JC, Winer EP, Weeks JC. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the national comprehensive Cancer network. Cancer. 2012;118(22):5463–72.CrossRefPubMedPubMedCentral
3.
go back to reference Hanahan D, Weinberg Robert A. Hallmarks of Cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMed Hanahan D, Weinberg Robert A. Hallmarks of Cancer: the next generation. Cell. 2011;144(5):646–74.CrossRefPubMed
4.
go back to reference Kuhn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, Otto W, von Bergen M, Boeing H, Kaaks R. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med. 2016;14:13.CrossRefPubMedPubMedCentral Kuhn T, Floegel A, Sookthai D, Johnson T, Rolle-Kampczyk U, Otto W, von Bergen M, Boeing H, Kaaks R. Higher plasma levels of lysophosphatidylcholine 18:0 are related to a lower risk of common cancers in a prospective metabolomics study. BMC Med. 2016;14:13.CrossRefPubMedPubMedCentral
5.
go back to reference Bertini I, Cacciatore S, Jensen BV, Schou JV, Johansen JS, Kruhøffer M, Luchinat C, Nielsen DL, Turano P. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. 2012;72(1):356–64.CrossRefPubMed Bertini I, Cacciatore S, Jensen BV, Schou JV, Johansen JS, Kruhøffer M, Luchinat C, Nielsen DL, Turano P. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. 2012;72(1):356–64.CrossRefPubMed
6.
go back to reference Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer. 2015;137:2124–32.CrossRefPubMedPubMedCentral Mondul AM, Moore SC, Weinstein SJ, Karoly ED, Sampson JN, Albanes D. Metabolomic analysis of prostate cancer risk in a prospective cohort: the alpha-tocolpherol, beta-carotene cancer prevention (ATBC) study. Int J Cancer. 2015;137:2124–32.CrossRefPubMedPubMedCentral
7.
go back to reference Mondul AM, Moore SC, Weinstein SJ, Männistö S, Sampson JN, Albanes D. 1-stearoylglycerol is associated with risk of prostate cancer: results from serum metabolomic profiling. Metabolomics : Official journal of the Metabolomic Society. 2014;10(5):1036–41.CrossRef Mondul AM, Moore SC, Weinstein SJ, Männistö S, Sampson JN, Albanes D. 1-stearoylglycerol is associated with risk of prostate cancer: results from serum metabolomic profiling. Metabolomics : Official journal of the Metabolomic Society. 2014;10(5):1036–41.CrossRef
8.
go back to reference Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–14. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–14.
9.
go back to reference Budczies J, Brockmoller SF, Muller BM, Barupal DK, Richter-Ehrenstein C, Kleine-Tebbe A, Griffin JL, Oresic M, Dietel M, Denkert C, et al. Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. J Proteome. 2013;94:279–88.CrossRef Budczies J, Brockmoller SF, Muller BM, Barupal DK, Richter-Ehrenstein C, Kleine-Tebbe A, Griffin JL, Oresic M, Dietel M, Denkert C, et al. Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. J Proteome. 2013;94:279–88.CrossRef
10.
go back to reference Henneges C, Bullinger D, Fux R, Friese N, Seeger H, Neubauer H, Laufer S, Gleiter CH, Schwab M, Zell A, et al. Prediction of breast cancer by profiling of urinary RNA metabolites using support vector machine-based feature selection. BMC Cancer. 2009;9:104.CrossRefPubMedPubMedCentral Henneges C, Bullinger D, Fux R, Friese N, Seeger H, Neubauer H, Laufer S, Gleiter CH, Schwab M, Zell A, et al. Prediction of breast cancer by profiling of urinary RNA metabolites using support vector machine-based feature selection. BMC Cancer. 2009;9:104.CrossRefPubMedPubMedCentral
11.
go back to reference Kanaan YM, Sampey BP, Beyene D, Esnakula AK, Naab TJ, Ricks-Santi LJ, Dasi S, Day A, Blackman KW, Frederick W, et al. Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genomics Proteomics. 2014;11(6):279–94.PubMed Kanaan YM, Sampey BP, Beyene D, Esnakula AK, Naab TJ, Ricks-Santi LJ, Dasi S, Day A, Blackman KW, Frederick W, et al. Metabolic profile of triple-negative breast cancer in African-American women reveals potential biomarkers of aggressive disease. Cancer Genomics Proteomics. 2014;11(6):279–94.PubMed
12.
go back to reference Asiago VM, Alvarado LZ, Shanaiah N, Gowda GAN, Owusu-Sarfo K, Ballas RA, Raftery D. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 2010;70(21):8309–18.CrossRefPubMedPubMedCentral Asiago VM, Alvarado LZ, Shanaiah N, Gowda GAN, Owusu-Sarfo K, Ballas RA, Raftery D. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. 2010;70(21):8309–18.CrossRefPubMedPubMedCentral
13.
go back to reference Kim Y, Koo I, Jung BH, Chung BC, Lee D. Multivariate classification of urine metabolome profiles for breast cancer diagnosis. BMC Bioinformatics. 2010;11(Suppl 2):S4.CrossRefPubMedPubMedCentral Kim Y, Koo I, Jung BH, Chung BC, Lee D. Multivariate classification of urine metabolome profiles for breast cancer diagnosis. BMC Bioinformatics. 2010;11(Suppl 2):S4.CrossRefPubMedPubMedCentral
14.
go back to reference Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A, Capstick V, Faught W, Sawyer MB. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(23):5835–41.CrossRef Slupsky CM, Steed H, Wells TH, Dabbs K, Schepansky A, Capstick V, Faught W, Sawyer MB. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clinical cancer research : an official journal of the American Association for Cancer Research. 2010;16(23):5835–41.CrossRef
15.
go back to reference John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, Ziogas A, Andrulis IL, Anton-Culver H, Boyd N, et al. The breast Cancer family registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.CrossRefPubMedPubMedCentral John EM, Hopper JL, Beck JC, Knight JA, Neuhausen SL, Senie RT, Ziogas A, Andrulis IL, Anton-Culver H, Boyd N, et al. The breast Cancer family registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.CrossRefPubMedPubMedCentral
16.
go back to reference Terry MB, Phillips KA, Daly MB, John EM, Andrulis IL, Buys SS, Goldgar DE, Knight JA, Whittemore AS, Chung WK, et al. Cohort profile: the breast Cancer prospective family study cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92. Terry MB, Phillips KA, Daly MB, John EM, Andrulis IL, Buys SS, Goldgar DE, Knight JA, Whittemore AS, Chung WK, et al. Cohort profile: the breast Cancer prospective family study cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92.
17.
go back to reference John EM, Miron A, Gong G, Phipps AI, Felberg I, Li FP, West DW, AS W. Prevalence of pathogenic BRCA1 mutation carriers in five US racial/ethnic groups. JAMA. 2007;298(24):2869–76.CrossRefPubMed John EM, Miron A, Gong G, Phipps AI, Felberg I, Li FP, West DW, AS W. Prevalence of pathogenic BRCA1 mutation carriers in five US racial/ethnic groups. JAMA. 2007;298(24):2869–76.CrossRefPubMed
18.
go back to reference Smith CAB. On the estimation of intraclass correlation. Ann Hum Genet. 1956;21:363–73.CrossRef Smith CAB. On the estimation of intraclass correlation. Ann Hum Genet. 1956;21:363–73.CrossRef
19.
go back to reference Wolack M: ICC: facilitating estimation of the intraclass correlation coefficient. 2015 Available at: https://cranr-projectorg/web/packages/ICC/ICCpdf Accessed 8 Sep 2016 . Wolack M: ICC: facilitating estimation of the intraclass correlation coefficient. 2015 Available at: https://cranr-projectorg/web/packages/ICC/ICCpdf Accessed 8 Sep 2016 .
20.
go back to reference Kim J-O MC. In: Uslaner EM, editor. FACTOR ANALYSIS statistical methods and practical issues. Iowa City, IA: Sara Miller McCune; 1978. Kim J-O MC. In: Uslaner EM, editor. FACTOR ANALYSIS statistical methods and practical issues. Iowa City, IA: Sara Miller McCune; 1978.
21.
go back to reference Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, Tan YT, Ji BT, Chow WH, Cai Q, et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomark Prev. 2013;22(4):631–40.CrossRef Sampson JN, Boca SM, Shu XO, Stolzenberg-Solomon RZ, Matthews CE, Hsing AW, Tan YT, Ji BT, Chow WH, Cai Q, et al. Metabolomics in epidemiology: sources of variability in metabolite measurements and implications. Cancer Epidemiol Biomark Prev. 2013;22(4):631–40.CrossRef
22.
go back to reference Cross AJ, Moore SC, Boca S, Huang WY, Xiong X, Stolzenberg-Solomon R, Sinha R, Sampson JN. A prospective study of serum metabolites and colorectal cancer risk. Cancer. 2014;120(19):3049–57.CrossRefPubMedPubMedCentral Cross AJ, Moore SC, Boca S, Huang WY, Xiong X, Stolzenberg-Solomon R, Sinha R, Sampson JN. A prospective study of serum metabolites and colorectal cancer risk. Cancer. 2014;120(19):3049–57.CrossRefPubMedPubMedCentral
23.
go back to reference Saito K, Maekawa K, Kinchen JM, Tanaka R, Kumagai Y, Saito Y. Gender- and age-associated differences in serum metabolite profiles among Japanese populations. Biol Pharm Bull. 2016;39(7):1179–86.CrossRefPubMed Saito K, Maekawa K, Kinchen JM, Tanaka R, Kumagai Y, Saito Y. Gender- and age-associated differences in serum metabolite profiles among Japanese populations. Biol Pharm Bull. 2016;39(7):1179–86.CrossRefPubMed
24.
go back to reference Tang X, Lin CC, Spasojevic I, Iversen ES, Chi JT, Marks JR. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res. 2014;16(4):415.CrossRefPubMedPubMedCentral Tang X, Lin CC, Spasojevic I, Iversen ES, Chi JT, Marks JR. A joint analysis of metabolomics and genetics of breast cancer. Breast Cancer Res. 2014;16(4):415.CrossRefPubMedPubMedCentral
Metadata
Title
Metabolomic profiles in breast cancer:a pilot case-control study in the breast cancer family registry
Authors
Marcelle M. Dougan
Yuqing Li
Lisa W. Chu
Robert W. Haile
Alice S. Whittemore
Summer S. Han
Steven C. Moore
Joshua N. Sampson
Irene L. Andrulis
Esther M. John
Ann W. Hsing
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4437-z

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine