Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal

Authors: Muyun Wei, Shaowei Mao, Guoliang Lu, Liang Li, Xiaopeng Lan, Zhongxian Huang, Yougen Chen, Miaoqing Zhao, Yueran Zhao, Qinghua Xia

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Metformin (Met) is a widely available diabetic drug and shows suppressed effects on renal cell carcinoma (RCC) metabolism and proliferation. Laboratory studies in RCC suggested that metformin has remarkable antitumor activities and seems to be a potential antitumor drug. But the facts that metformin may be not effective in reducing the risk of RCC in cancer clinical trials made it difficult to determine the benefits of metformin in RCC prevention and treatment. The mechanisms underlying the different conclusions between laboratory experiments and clinical analysis remains unclear. The goal of the present study was to determine whether long-term metformin use can induce resistance in RCC, whether metformin resistance could be used to explain the disaccord in laboratory and clinical studies, and whether the drug valproic acid (VPA), which inhibits histone deacetylase, exhibits synergistic cytotoxicity with metformin and can counteract the resistance of metformin in RCC.

Methods

We performed CCK8, transwell, wound healing assay, flow cytometry and western blotting to detect the regulations of proliferation, migration, cell cycle and apoptosis in 786-O, ACHN and metformin resistance 786-O (786-M-R) cells treated with VPA, metformin or a combination of two drugs. We used TGF-β, SC79, LY294002, Rapamycin, protein kinase B (AKT) inhibitor to treat the 786-O or 786-M-R cells and detected the regulations in TGF-β /pSMAD3 and AMPK/AKT pathways.

Results

786-M-R was refractory to metformin-induced antitumor effects on proliferation, migration, cell cycle and cell apoptosis. AMPK/AKT pathways and TGF-β/SMAD3 pathways showed low sensibilities in 786-M-R. The histone H3 acetylation diminished in the 786-M-R cells. However, the addition of VPA dramatically upregulated histone H3 acetylation, increased the sensibility of AKT and inhibited pSMAD3/SMAD4, letting the combination of VPA and metformin remarkably reappear the anti-tumour effects of metformin in 786-M-R cells.

Conclusions

VPA not only exhibits synergistic cytotoxicity with metformin but also counteracts resistance to metformin in renal cell carcinoma cell. The re-sensitization to metformin induced by VPA in metformin-resistant cells may help treat renal cell carcinoma patients.
Literature
2.
go back to reference Cho E, Adami HO, Lindblad P. Epidemiology of renal cell cancer. Hematol Oncol Clin North Am. 2011;25(4):651–65.CrossRefPubMed Cho E, Adami HO, Lindblad P. Epidemiology of renal cell cancer. Hematol Oncol Clin North Am. 2011;25(4):651–65.CrossRefPubMed
3.
go back to reference Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, Khoo V, Eisen T, Horwich A, Group EGW. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(3):iii49–56.CrossRefPubMed Escudier B, Porta C, Schmidinger M, Algaba F, Patard JJ, Khoo V, Eisen T, Horwich A, Group EGW. Renal cell carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25(3):iii49–56.CrossRefPubMed
4.
go back to reference Cetin M, Sahin S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug delivery. 2016;23(8):2796–805.CrossRefPubMed Cetin M, Sahin S. Microparticulate and nanoparticulate drug delivery systems for metformin hydrochloride. Drug delivery. 2016;23(8):2796–805.CrossRefPubMed
5.
go back to reference Laskov I, Drudi L, Beauchamp MC, Yasmeen A, Ferenczy A, Pollak M, Gotlieb WH. Anti-diabetic doses of metformin decrease proliferation markers in tumors of patients with endometrial cancer. Gynecol Oncol. 2014;134(3):607–14.CrossRefPubMed Laskov I, Drudi L, Beauchamp MC, Yasmeen A, Ferenczy A, Pollak M, Gotlieb WH. Anti-diabetic doses of metformin decrease proliferation markers in tumors of patients with endometrial cancer. Gynecol Oncol. 2014;134(3):607–14.CrossRefPubMed
6.
go back to reference Li T, Sun X, Jiang X. UCA1 involved in the metformin-regulated bladder cancer cell proliferation and glycolysis. Tumour Biol. 2017;39(6):1010428317710823.PubMed Li T, Sun X, Jiang X. UCA1 involved in the metformin-regulated bladder cancer cell proliferation and glycolysis. Tumour Biol. 2017;39(6):1010428317710823.PubMed
7.
go back to reference Mohamed Suhaimi NA, Phyo WM, Yap HY, Choy SHY, Wei X, Choudhury Y, Tan WJ, Tan L, Foo RSY, Tan SHS, et al. Metformin inhibits cellular proliferation and bioenergetics in colorectal Cancer patient-derived xenografts. Mol Cancer Ther. 2017;16(9):2035–44.CrossRefPubMed Mohamed Suhaimi NA, Phyo WM, Yap HY, Choy SHY, Wei X, Choudhury Y, Tan WJ, Tan L, Foo RSY, Tan SHS, et al. Metformin inhibits cellular proliferation and bioenergetics in colorectal Cancer patient-derived xenografts. Mol Cancer Ther. 2017;16(9):2035–44.CrossRefPubMed
8.
go back to reference Gwak H, Kim Y, An H, Dhanasekaran DN, Song YS. Metformin induces degradation of cyclin D1 via AMPK/GSK3beta axis in ovarian cancer. Mol Carcinog. 2017;56(2):349–58.CrossRefPubMed Gwak H, Kim Y, An H, Dhanasekaran DN, Song YS. Metformin induces degradation of cyclin D1 via AMPK/GSK3beta axis in ovarian cancer. Mol Carcinog. 2017;56(2):349–58.CrossRefPubMed
9.
go back to reference Li C, Xue Y, Xi YR, Xie K. Progress in the application and mechanism of metformin in treating non-small cell lung cancer. Oncol Lett. 2017;13(5):2873–80.CrossRefPubMedPubMedCentral Li C, Xue Y, Xi YR, Xie K. Progress in the application and mechanism of metformin in treating non-small cell lung cancer. Oncol Lett. 2017;13(5):2873–80.CrossRefPubMedPubMedCentral
10.
go back to reference Davies G, Lobanova L, Dawicki W, Groot G, Gordon JR, Bowen M, Harkness T, Arnason T. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer. PLoS One. 2017;12(12):e0187191.CrossRefPubMedPubMedCentral Davies G, Lobanova L, Dawicki W, Groot G, Gordon JR, Bowen M, Harkness T, Arnason T. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer. PLoS One. 2017;12(12):e0187191.CrossRefPubMedPubMedCentral
11.
go back to reference Valaee S, Yaghoobi MM, Shamsara M. Metformin inhibits gastric cancer cells metastatic traits through suppression of epithelial-mesenchymal transition in a glucose-independent manner. PLoS One. 2017;12(3):e0174486.CrossRefPubMedPubMedCentral Valaee S, Yaghoobi MM, Shamsara M. Metformin inhibits gastric cancer cells metastatic traits through suppression of epithelial-mesenchymal transition in a glucose-independent manner. PLoS One. 2017;12(3):e0174486.CrossRefPubMedPubMedCentral
12.
go back to reference Avci CB, Harman E, Dodurga Y, Susluer SY, Gunduz C. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev. 2013;14(2):765–8.CrossRefPubMed Avci CB, Harman E, Dodurga Y, Susluer SY, Gunduz C. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev. 2013;14(2):765–8.CrossRefPubMed
13.
go back to reference Xie W, Wang L, Sheng H, Qiu J, Zhang D, Zhang L, Yang F, Tang D, Zhang K. Metformin induces growth inhibition and cell cycle arrest by upregulating MicroRNA34a in renal Cancer cells. Med Sci Monit. 2017;23:29–37.CrossRefPubMedPubMedCentral Xie W, Wang L, Sheng H, Qiu J, Zhang D, Zhang L, Yang F, Tang D, Zhang K. Metformin induces growth inhibition and cell cycle arrest by upregulating MicroRNA34a in renal Cancer cells. Med Sci Monit. 2017;23:29–37.CrossRefPubMedPubMedCentral
14.
go back to reference Zhong ZH, Zhong ZY, Zhu ZT, Li C, Zhang CY, Tong M, Jiang HM. Effect of metformin on the proliferation and apoptosis of the renal cancer cell line 786-O and the underlying mechanisms. J BUON. 2015;20(5):1244–9.PubMed Zhong ZH, Zhong ZY, Zhu ZT, Li C, Zhang CY, Tong M, Jiang HM. Effect of metformin on the proliferation and apoptosis of the renal cancer cell line 786-O and the underlying mechanisms. J BUON. 2015;20(5):1244–9.PubMed
15.
go back to reference Yang FQ, Wang JJ, Yan JS, Huang JH, Li W, Che JP, Wang GC, Liu M, Zheng JH. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells. Int J Clin Exp Med. 2014;7(10):3289–96.PubMedPubMedCentral Yang FQ, Wang JJ, Yan JS, Huang JH, Li W, Che JP, Wang GC, Liu M, Zheng JH. Metformin inhibits cell growth by upregulating microRNA-26a in renal cancer cells. Int J Clin Exp Med. 2014;7(10):3289–96.PubMedPubMedCentral
16.
go back to reference Zhou XL, Xue WH, Ding XF, Li LF, Dou MM, Zhang WJ, Lv Z, Fan ZR, Zhao J, Wang LX. Association between metformin and the risk of gastric cancer in patients with type 2 diabetes mellitus: a meta-analysis of cohort studies. Oncotarget. 2017;8(33):55622–31.PubMedPubMedCentral Zhou XL, Xue WH, Ding XF, Li LF, Dou MM, Zhang WJ, Lv Z, Fan ZR, Zhao J, Wang LX. Association between metformin and the risk of gastric cancer in patients with type 2 diabetes mellitus: a meta-analysis of cohort studies. Oncotarget. 2017;8(33):55622–31.PubMedPubMedCentral
17.
go back to reference Ma S, Zheng Y, Xiao Y, Zhou P, Tan H. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine (Baltimore). 2017;96(19):e6888.CrossRef Ma S, Zheng Y, Xiao Y, Zhou P, Tan H. Meta-analysis of studies using metformin as a reducer for liver cancer risk in diabetic patients. Medicine (Baltimore). 2017;96(19):e6888.CrossRef
18.
go back to reference Zhu N, Zhang Y, Gong YI, He J, Chen X. Metformin and lung cancer risk of patients with type 2 diabetes mellitus: a meta-analysis. Biomed Rep. 2015;3(2):235–41.CrossRefPubMedPubMedCentral Zhu N, Zhang Y, Gong YI, He J, Chen X. Metformin and lung cancer risk of patients with type 2 diabetes mellitus: a meta-analysis. Biomed Rep. 2015;3(2):235–41.CrossRefPubMedPubMedCentral
19.
go back to reference Al Hilli MM, Bakkum-Gamez JN, Mariani A, Cliby WA, Mc Gree ME, Weaver AL, Dowdy SC, Podratz KC. The effect of diabetes and metformin on clinical outcomes is negligible in risk-adjusted endometrial cancer cohorts. Gynecol Oncol. 2016;140(2):270–6.CrossRefPubMed Al Hilli MM, Bakkum-Gamez JN, Mariani A, Cliby WA, Mc Gree ME, Weaver AL, Dowdy SC, Podratz KC. The effect of diabetes and metformin on clinical outcomes is negligible in risk-adjusted endometrial cancer cohorts. Gynecol Oncol. 2016;140(2):270–6.CrossRefPubMed
20.
go back to reference Goossens ME, Buntinx F, Zeegers MP, Driessen JH, De Bruin ML, De Vries F. Influence of metformin intake on the risk of bladder cancer in type 2 diabetes patients. Br J Clin Pharmacol. 2015;80(6):1464–72.CrossRefPubMedPubMedCentral Goossens ME, Buntinx F, Zeegers MP, Driessen JH, De Bruin ML, De Vries F. Influence of metformin intake on the risk of bladder cancer in type 2 diabetes patients. Br J Clin Pharmacol. 2015;80(6):1464–72.CrossRefPubMedPubMedCentral
21.
go back to reference Becker C, Jick SS, Meier CR, Bodmer M. No evidence for a decreased risk of thyroid cancer in association with use of metformin or other antidiabetic drugs: a case-control study. BMC Cancer. 2015;15:719.CrossRefPubMedPubMedCentral Becker C, Jick SS, Meier CR, Bodmer M. No evidence for a decreased risk of thyroid cancer in association with use of metformin or other antidiabetic drugs: a case-control study. BMC Cancer. 2015;15:719.CrossRefPubMedPubMedCentral
22.
go back to reference Sakoda LC, Ferrara A, Achacoso NS, Peng T, Ehrlich SF, Quesenberry CP Jr, Habel LA. Metformin use and lung cancer risk in patients with diabetes. Cancer Prev Res (Phila). 2015;8(2):174–9.CrossRef Sakoda LC, Ferrara A, Achacoso NS, Peng T, Ehrlich SF, Quesenberry CP Jr, Habel LA. Metformin use and lung cancer risk in patients with diabetes. Cancer Prev Res (Phila). 2015;8(2):174–9.CrossRef
23.
go back to reference Wu GF, Zhang XL, Luo ZG, Yan JJ, Pan SH, Ying XR, Pan JG, Zhang GF. Metformin therapy and prostate cancer risk: a meta-analysis of observational studies. Int J Clin Exp Med. 2015;8(8):13089–98.PubMedPubMedCentral Wu GF, Zhang XL, Luo ZG, Yan JJ, Pan SH, Ying XR, Pan JG, Zhang GF. Metformin therapy and prostate cancer risk: a meta-analysis of observational studies. Int J Clin Exp Med. 2015;8(8):13089–98.PubMedPubMedCentral
24.
go back to reference Kowall B, Stang A, Rathmann W, Kostev K. No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: database analyses from Germany and the UK. Pharmacoepidemiol Drug Saf. 2015;24(8):865–74.CrossRefPubMed Kowall B, Stang A, Rathmann W, Kostev K. No reduced risk of overall, colorectal, lung, breast, and prostate cancer with metformin therapy in diabetic patients: database analyses from Germany and the UK. Pharmacoepidemiol Drug Saf. 2015;24(8):865–74.CrossRefPubMed
25.
go back to reference Soffer D, Shi J, Chung J, Schottinger JE, Wallner LP, Chlebowski RT, Lentz SE, Haque R. Metformin and breast and gynecological cancer risk among women with diabetes. BMJ Open Diabetes Res Care. 2015;3(1):e000049.CrossRefPubMedPubMedCentral Soffer D, Shi J, Chung J, Schottinger JE, Wallner LP, Chlebowski RT, Lentz SE, Haque R. Metformin and breast and gynecological cancer risk among women with diabetes. BMJ Open Diabetes Res Care. 2015;3(1):e000049.CrossRefPubMedPubMedCentral
26.
go back to reference Nayan M, Macdonald EM, Juurlink DN, Austin PC, Finelli A, Kulkarni GS, Hamilton RJ, Canadian Drug S, Effectiveness Research N. Medication use and survival in diabetic patients with kidney cancer: a population-based cohort study. Pharmacol Res. 2016;113:468–74.CrossRefPubMed Nayan M, Macdonald EM, Juurlink DN, Austin PC, Finelli A, Kulkarni GS, Hamilton RJ, Canadian Drug S, Effectiveness Research N. Medication use and survival in diabetic patients with kidney cancer: a population-based cohort study. Pharmacol Res. 2016;113:468–74.CrossRefPubMed
27.
go back to reference Nayan M, Finelli A, Jewett MA, Juurlink DN, Austin PC, Kulkarni GS, Hamilton RJ. Metformin use and kidney Cancer outcomes in patients with diabetes: a propensity score analysis. Clin Genitourin Cancer. 2017;15(2):300–5.CrossRefPubMed Nayan M, Finelli A, Jewett MA, Juurlink DN, Austin PC, Kulkarni GS, Hamilton RJ. Metformin use and kidney Cancer outcomes in patients with diabetes: a propensity score analysis. Clin Genitourin Cancer. 2017;15(2):300–5.CrossRefPubMed
28.
go back to reference Keizman D, Ish-Shalom M, Sella A, Gottfried M, Maimon N, Peer A, Hammers H, Eisenberger MA, Sinibaldi V, Neiman V, et al. Metformin use and outcome of Sunitinib treatment in patients with diabetes and metastatic renal cell carcinoma. Clin Genitourin Cancer. 2016;14(5):420–5.CrossRefPubMed Keizman D, Ish-Shalom M, Sella A, Gottfried M, Maimon N, Peer A, Hammers H, Eisenberger MA, Sinibaldi V, Neiman V, et al. Metformin use and outcome of Sunitinib treatment in patients with diabetes and metastatic renal cell carcinoma. Clin Genitourin Cancer. 2016;14(5):420–5.CrossRefPubMed
29.
go back to reference Hamieh L, McKay RR, Lin X, Moreira RB, Simantov R, Choueiri TK. Effect of metformin use on survival outcomes in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer. 2017;15(2):221–9.CrossRefPubMed Hamieh L, McKay RR, Lin X, Moreira RB, Simantov R, Choueiri TK. Effect of metformin use on survival outcomes in patients with metastatic renal cell carcinoma. Clin Genitourin Cancer. 2017;15(2):221–9.CrossRefPubMed
30.
go back to reference Hakimi AA, Chen L, Kim PH, Sjoberg D, Glickman L, Walker MR, Russo P. The impact of metformin use on recurrence and cancer-specific survival in clinically localized high-risk renal cell carcinoma. Can Urol Assoc J. 2013;7(11–12):E687–91.CrossRefPubMedPubMedCentral Hakimi AA, Chen L, Kim PH, Sjoberg D, Glickman L, Walker MR, Russo P. The impact of metformin use on recurrence and cancer-specific survival in clinically localized high-risk renal cell carcinoma. Can Urol Assoc J. 2013;7(11–12):E687–91.CrossRefPubMedPubMedCentral
31.
go back to reference Becker C, Jick SS, Meier CR, Bodmer M. Metformin and the risk of renal cell carcinoma: a case-control analysis. Eur J Cancer Prev. 2017;26(3):257–62.CrossRefPubMed Becker C, Jick SS, Meier CR, Bodmer M. Metformin and the risk of renal cell carcinoma: a case-control analysis. Eur J Cancer Prev. 2017;26(3):257–62.CrossRefPubMed
32.
go back to reference Li Y, Hu L, Xia Q, Yuan Y, Mi Y. The impact of metformin use on survival in kidney cancer patients with diabetes: a meta-analysis. Int Urol Nephrol. 2017;49(6):975–81.CrossRefPubMedPubMedCentral Li Y, Hu L, Xia Q, Yuan Y, Mi Y. The impact of metformin use on survival in kidney cancer patients with diabetes: a meta-analysis. Int Urol Nephrol. 2017;49(6):975–81.CrossRefPubMedPubMedCentral
33.
go back to reference Tseng CH. Use of metformin and risk of kidney cancer in patients with type 2 diabetes. Eur J Cancer. 2016;52:19–25.CrossRefPubMed Tseng CH. Use of metformin and risk of kidney cancer in patients with type 2 diabetes. Eur J Cancer. 2016;52:19–25.CrossRefPubMed
34.
go back to reference Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB, Khaper N. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 2014;9(5):e98207.CrossRefPubMedPubMedCentral Queiroz EA, Puukila S, Eichler R, Sampaio SC, Forsyth HL, Lees SJ, Barbosa AM, Dekker RF, Fortes ZB, Khaper N. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells. PLoS One. 2014;9(5):e98207.CrossRefPubMedPubMedCentral
35.
go back to reference Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 2003;63(13):3637–45.PubMed Rosato RR, Almenara JA, Grant S. The histone deacetylase inhibitor MS-275 promotes differentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF1 1. Cancer Res. 2003;63(13):3637–45.PubMed
36.
go back to reference Kawagoe R, Kawagoe H, Sano K. Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res. 2002;26(5):495–502.CrossRefPubMed Kawagoe R, Kawagoe H, Sano K. Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res. 2002;26(5):495–502.CrossRefPubMed
37.
go back to reference Zhang C, Liu S, Yuan X, Hu Z, Li H, Wu M, Yuan J, Zhao Z, Su J, Wang X, et al. Valproic acid promotes human glioma U87 cells apoptosis and inhibits glycogen synthase kinase-3beta through ERK/Akt signaling. Cell Physiol Biochem. 2016;39(6):2173–85.CrossRefPubMed Zhang C, Liu S, Yuan X, Hu Z, Li H, Wu M, Yuan J, Zhao Z, Su J, Wang X, et al. Valproic acid promotes human glioma U87 cells apoptosis and inhibits glycogen synthase kinase-3beta through ERK/Akt signaling. Cell Physiol Biochem. 2016;39(6):2173–85.CrossRefPubMed
38.
go back to reference Zhang X, Zhang X, Huang T, Geng J, Liu M, Zheng J. Combination of metformin and valproic acid synergistically induces cell cycle arrest and apoptosis in clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2015;8(3):2823–8.PubMedPubMedCentral Zhang X, Zhang X, Huang T, Geng J, Liu M, Zheng J. Combination of metformin and valproic acid synergistically induces cell cycle arrest and apoptosis in clear cell renal cell carcinoma. Int J Clin Exp Pathol. 2015;8(3):2823–8.PubMedPubMedCentral
39.
go back to reference Lin CT, Lai HC, Lee HY, Lin WH, Chang CC, Chu TY, Lin YW, Lee KD, Yu MH. Valproic acid resensitizes cisplatin-resistant ovarian cancer cells. Cancer Sci. 2008;99(6):1218–26.CrossRefPubMed Lin CT, Lai HC, Lee HY, Lin WH, Chang CC, Chu TY, Lin YW, Lee KD, Yu MH. Valproic acid resensitizes cisplatin-resistant ovarian cancer cells. Cancer Sci. 2008;99(6):1218–26.CrossRefPubMed
40.
go back to reference Sakai I, Miyake H, Fujisawa M. Acquired resistance to sunitinib in human renal cell carcinoma cells is mediated by constitutive activation of signal transduction pathways associated with tumour cell proliferation. BJU Int. 2013;112(2):E211–20.CrossRefPubMed Sakai I, Miyake H, Fujisawa M. Acquired resistance to sunitinib in human renal cell carcinoma cells is mediated by constitutive activation of signal transduction pathways associated with tumour cell proliferation. BJU Int. 2013;112(2):E211–20.CrossRefPubMed
41.
go back to reference Raptis AE, Tountas NB, Yalouris AG, Halvatsiotis PG, Raptis SA. Therapeutic effect of glibenclamide in a fixed combination with metformin or phenformin in NIDDM patients. Horm Metab Res. 1996;28(2):89–94.CrossRefPubMed Raptis AE, Tountas NB, Yalouris AG, Halvatsiotis PG, Raptis SA. Therapeutic effect of glibenclamide in a fixed combination with metformin or phenformin in NIDDM patients. Horm Metab Res. 1996;28(2):89–94.CrossRefPubMed
42.
go back to reference Liu J, Li M, Song B, Jia C, Zhang L, Bai X, Hu W. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urol Oncol. 2013;31(2):264–70.CrossRefPubMed Liu J, Li M, Song B, Jia C, Zhang L, Bai X, Hu W. Metformin inhibits renal cell carcinoma in vitro and in vivo xenograft. Urol Oncol. 2013;31(2):264–70.CrossRefPubMed
43.
go back to reference Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK inhibits the stimulatory effects of TGF-beta on Smad2/3 activity, cell migration, and epithelial-to-mesenchymal transition. Mol Pharmacol. 2015;88(6):1062–71.CrossRefPubMedPubMedCentral Lin H, Li N, He H, Ying Y, Sunkara S, Luo L, Lv N, Huang D, Luo Z. AMPK inhibits the stimulatory effects of TGF-beta on Smad2/3 activity, cell migration, and epithelial-to-mesenchymal transition. Mol Pharmacol. 2015;88(6):1062–71.CrossRefPubMedPubMedCentral
44.
go back to reference Dumanskiy YV, Kudriashov AG, Vasilenko IV, Kondratyuk RB, Gulkov YK, Cyrillichystiakov RS. Markers of epithelial-mesenchymal transition in renal cell carcinoma. Exp Oncol. 2013;35(4):325–7.PubMed Dumanskiy YV, Kudriashov AG, Vasilenko IV, Kondratyuk RB, Gulkov YK, Cyrillichystiakov RS. Markers of epithelial-mesenchymal transition in renal cell carcinoma. Exp Oncol. 2013;35(4):325–7.PubMed
45.
go back to reference Scherbakov AM, Sorokin DV, Tatarskiy VV Jr, Prokhorov NS, Semina SE, Berstein LM, Krasil'nikov MA. The phenomenon of acquired resistance to metformin in breast cancer cells: the interaction of growth pathways and estrogen receptor signaling. IUBMB Life. 2016;68(4):281–92.CrossRefPubMed Scherbakov AM, Sorokin DV, Tatarskiy VV Jr, Prokhorov NS, Semina SE, Berstein LM, Krasil'nikov MA. The phenomenon of acquired resistance to metformin in breast cancer cells: the interaction of growth pathways and estrogen receptor signaling. IUBMB Life. 2016;68(4):281–92.CrossRefPubMed
46.
go back to reference Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care. 2012;16(4):R136.CrossRefPubMedPubMedCentral Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care. 2012;16(4):R136.CrossRefPubMedPubMedCentral
47.
go back to reference Kheder S, Sisley K, Hadad S, Balasubramanian SP. Effects of prolonged exposure to low dose metformin in thyroid cancer cell lines. J Cancer. 2017;8(6):1053–61.CrossRefPubMedPubMedCentral Kheder S, Sisley K, Hadad S, Balasubramanian SP. Effects of prolonged exposure to low dose metformin in thyroid cancer cell lines. J Cancer. 2017;8(6):1053–61.CrossRefPubMedPubMedCentral
48.
go back to reference Vallianou NG, Evangelopoulos A, Kazazis C. Metformin and cancer. Rev Diabet Stud. 2013;10(4):228–35.CrossRefPubMed Vallianou NG, Evangelopoulos A, Kazazis C. Metformin and cancer. Rev Diabet Stud. 2013;10(4):228–35.CrossRefPubMed
49.
go back to reference Hager M, Haufe H, Kemmerling R, Hitzl W, Mikuz G, Moser PL, Kolbitsch C. Increased activated Akt expression in renal cell carcinomas and prognosis. J Cell Mol Med. 2009;13(8B):2181–8.CrossRefPubMed Hager M, Haufe H, Kemmerling R, Hitzl W, Mikuz G, Moser PL, Kolbitsch C. Increased activated Akt expression in renal cell carcinomas and prognosis. J Cell Mol Med. 2009;13(8B):2181–8.CrossRefPubMed
50.
go back to reference Li X, Lu Y, Lu H, Luo J, Hong Y, Fan Z. AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab. Oncotarget. 2015;6(13):11507–18.PubMedPubMedCentral Li X, Lu Y, Lu H, Luo J, Hong Y, Fan Z. AMPK-mediated energy homeostasis and associated metabolic effects on cancer cell response and resistance to cetuximab. Oncotarget. 2015;6(13):11507–18.PubMedPubMedCentral
51.
go back to reference Qu C, Zhang W, Zheng G, Zhang Z, Yin J, He Z. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem. 2014;386(1–2):63–71.CrossRefPubMed Qu C, Zhang W, Zheng G, Zhang Z, Yin J, He Z. Metformin reverses multidrug resistance and epithelial-mesenchymal transition (EMT) via activating AMP-activated protein kinase (AMPK) in human breast cancer cells. Mol Cell Biochem. 2014;386(1–2):63–71.CrossRefPubMed
52.
go back to reference Yang H, Peng YF, Ni HM, Li Y, Shi YH, Ding WX, Fan J. Basal autophagy and feedback activation of Akt are associated with resistance to metformin-induced inhibition of hepatic tumor cell growth. PLoS One. 2015;10(6):e0130953.CrossRefPubMedPubMedCentral Yang H, Peng YF, Ni HM, Li Y, Shi YH, Ding WX, Fan J. Basal autophagy and feedback activation of Akt are associated with resistance to metformin-induced inhibition of hepatic tumor cell growth. PLoS One. 2015;10(6):e0130953.CrossRefPubMedPubMedCentral
53.
go back to reference Xie W, Aisner S, Baredes S, Sreepada G, Shah R, Reiss M. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck. 2013;35(1):76–85.CrossRefPubMed Xie W, Aisner S, Baredes S, Sreepada G, Shah R, Reiss M. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck. 2013;35(1):76–85.CrossRefPubMed
54.
go back to reference Makarevic J, Tawanaie N, Juengel E, Reiter M, Mani J, Tsaur I, Bartsch G, Haferkamp A, Blaheta RA. Cross-communication between histone H3 and H4 acetylation and Akt-mTOR signalling in prostate cancer cells. J Cell Mol Med. 2014;18(7):1460–6.CrossRefPubMedPubMedCentral Makarevic J, Tawanaie N, Juengel E, Reiter M, Mani J, Tsaur I, Bartsch G, Haferkamp A, Blaheta RA. Cross-communication between histone H3 and H4 acetylation and Akt-mTOR signalling in prostate cancer cells. J Cell Mol Med. 2014;18(7):1460–6.CrossRefPubMedPubMedCentral
55.
go back to reference Liu Y, Xing ZB, Zhang JH, Fang Y. Akt kinase targets the association of CBP with histone H3 to regulate the acetylation of lysine K18. FEBS Lett. 2013;587(7):847–53.CrossRefPubMed Liu Y, Xing ZB, Zhang JH, Fang Y. Akt kinase targets the association of CBP with histone H3 to regulate the acetylation of lysine K18. FEBS Lett. 2013;587(7):847–53.CrossRefPubMed
56.
go back to reference Lee JH, Kang BH, Jang H, Kim TW, Choi J, Kwak S, Han J, Cho EJ, Youn HD. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage. Nucleic Acids Res. 2015;43(9):4505–16.CrossRefPubMedPubMedCentral Lee JH, Kang BH, Jang H, Kim TW, Choi J, Kwak S, Han J, Cho EJ, Youn HD. AKT phosphorylates H3-threonine 45 to facilitate termination of gene transcription in response to DNA damage. Nucleic Acids Res. 2015;43(9):4505–16.CrossRefPubMedPubMedCentral
57.
go back to reference Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle. 2010;9(22):4461–8.CrossRefPubMed Cufi S, Vazquez-Martin A, Oliveras-Ferraros C, Martin-Castillo B, Joven J, Menendez JA. Metformin against TGFbeta-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis. Cell Cycle. 2010;9(22):4461–8.CrossRefPubMed
58.
go back to reference Seton-Rogers S. Epithelial-mesenchymal transition: untangling EMT's functions. Nat Rev Cancer. 2016;16(1):1.CrossRefPubMed Seton-Rogers S. Epithelial-mesenchymal transition: untangling EMT's functions. Nat Rev Cancer. 2016;16(1):1.CrossRefPubMed
59.
go back to reference Brozovic A. The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch Toxicol. 2017;91(2):605–19.CrossRefPubMed Brozovic A. The relationship between platinum drug resistance and epithelial-mesenchymal transition. Arch Toxicol. 2017;91(2):605–19.CrossRefPubMed
60.
go back to reference Dekervel J, Bulle A, Windmolders P, Lambrechts D, Van Cutsem E, Verslype C, van Pelt J. Acriflavine inhibits acquired drug resistance by blocking the epithelial-to-mesenchymal transition and the unfolded protein response. Transl Oncol. 2017;10(1):59–69.CrossRefPubMed Dekervel J, Bulle A, Windmolders P, Lambrechts D, Van Cutsem E, Verslype C, van Pelt J. Acriflavine inhibits acquired drug resistance by blocking the epithelial-to-mesenchymal transition and the unfolded protein response. Transl Oncol. 2017;10(1):59–69.CrossRefPubMed
61.
go back to reference Lan X, Lu G, Yuan C, Mao S, Jiang W, Chen Y, Jin X, Xia Q. Valproic acid (VPA) inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4. J Cancer Res Clin Oncol. 2016;142(1):177–85.CrossRefPubMed Lan X, Lu G, Yuan C, Mao S, Jiang W, Chen Y, Jin X, Xia Q. Valproic acid (VPA) inhibits the epithelial-mesenchymal transition in prostate carcinoma via the dual suppression of SMAD4. J Cancer Res Clin Oncol. 2016;142(1):177–85.CrossRefPubMed
Metadata
Title
Valproic acid sensitizes metformin-resistant human renal cell carcinoma cells by upregulating H3 acetylation and EMT reversal
Authors
Muyun Wei
Shaowei Mao
Guoliang Lu
Liang Li
Xiaopeng Lan
Zhongxian Huang
Yougen Chen
Miaoqing Zhao
Yueran Zhao
Qinghua Xia
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4344-3

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine