Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Debate

In silico cancer research towards 3R

Authors: Claire Jean-Quartier, Fleur Jeanquartier, Igor Jurisica, Andreas Holzinger

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Improving our understanding of cancer and other complex diseases requires integrating diverse data sets and algorithms. Intertwining in vivo and in vitro data and in silico models are paramount to overcome intrinsic difficulties given by data complexity. Importantly, this approach also helps to uncover underlying molecular mechanisms. Over the years, research has introduced multiple biochemical and computational methods to study the disease, many of which require animal experiments. However, modeling systems and the comparison of cellular processes in both eukaryotes and prokaryotes help to understand specific aspects of uncontrolled cell growth, eventually leading to improved planning of future experiments. According to the principles for humane techniques milestones in alternative animal testing involve in vitro methods such as cell-based models and microfluidic chips, as well as clinical tests of microdosing and imaging. Up-to-date, the range of alternative methods has expanded towards computational approaches, based on the use of information from past in vitro and in vivo experiments. In fact, in silico techniques are often underrated but can be vital to understanding fundamental processes in cancer. They can rival accuracy of biological assays, and they can provide essential focus and direction to reduce experimental cost.

Main body

We give an overview on in vivo, in vitro and in silico methods used in cancer research. Common models as cell-lines, xenografts, or genetically modified rodents reflect relevant pathological processes to a different degree, but can not replicate the full spectrum of human disease. There is an increasing importance of computational biology, advancing from the task of assisting biological analysis with network biology approaches as the basis for understanding a cell’s functional organization up to model building for predictive systems.

Conclusion

Underlining and extending the in silico approach with respect to the 3Rs for replacement, reduction and refinement will lead cancer research towards efficient and effective precision medicine. Therefore, we suggest refined translational models and testing methods based on integrative analyses and the incorporation of computational biology within cancer research.
Literature
2.
go back to reference National Cancer Institute. Cancer Statistics at a Glance. https://www.cancer.gov/about-cancer/understanding/statistics. Last updated Dec 2015. Accessed Mar 2017. National Cancer Institute. Cancer Statistics at a Glance. https://​www.​cancer.​gov/​about-cancer/​understanding/​statistics.​ Last updated Dec 2015. Accessed Mar 2017.
3.
go back to reference Wagoner J. Occupational carcinogenesis: the two hundred years since percivall pott. Ann NY Acad Sci. 1976; 271(1):1–4.CrossRef Wagoner J. Occupational carcinogenesis: the two hundred years since percivall pott. Ann NY Acad Sci. 1976; 271(1):1–4.CrossRef
4.
go back to reference Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschläger M, Krupitza G, Dolznig H. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment. Semin Cancer Biol. 2015; 35:107–24.PubMedCrossRef Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschläger M, Krupitza G, Dolznig H. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment. Semin Cancer Biol. 2015; 35:107–24.PubMedCrossRef
5.
go back to reference Schwartz AS, Yu J, Gardenour KR, Finley RLJ, Ideker T. Cost-effective strategies for completing the interactome. Nat Methods. 2009; 6:55–61.PubMedCrossRef Schwartz AS, Yu J, Gardenour KR, Finley RLJ, Ideker T. Cost-effective strategies for completing the interactome. Nat Methods. 2009; 6:55–61.PubMedCrossRef
6.
go back to reference Bundesministeriums für Wissenschaft, Forschung und Wirtschaft. Tierversuchsstatistik 2015. https://bmbwf.gv.at/das-ministerium/publikationen/forschung/statistiken/tierversuchsstatistiken. Accessed Nov 2017. Bundesministeriums für Wissenschaft, Forschung und Wirtschaft. Tierversuchsstatistik 2015. https://​bmbwf.​gv.​at/​das-ministerium/​publikationen/​forschung/​statistiken/​tierversuchsstat​istiken.​ Accessed Nov 2017.
9.
go back to reference U.K. Government. Annual Statistics of Scientific Procedures on Living Animals Great Britain. London: Williams Lea Group; 2016. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/627284/ annual-statistics-scientificprocedures-living-animals-2016.pdf. Accessed Mar 2018. U.K. Government. Annual Statistics of Scientific Procedures on Living Animals Great Britain. London: Williams Lea Group; 2016. https://​www.​gov.​uk/​government/​uploads/​system/​uploads/​attachment_​data/​file/​627284/​ annual-statistics-scientificprocedures-living-animals-2016.pdf. Accessed Mar 2018.
10.
go back to reference Animal and Plant Health Inspection Service. Annual Report Animal Usage by Fiscal Year: United States Department of Agriculture; 2016. Updated August 2016, Accessed March 2018. https://www.aphis.usda.gov/animal_welfare/downloads/reports/Annual-Report-Animal-Usage-by-FY2016.pdf. Animal and Plant Health Inspection Service. Annual Report Animal Usage by Fiscal Year: United States Department of Agriculture; 2016. Updated August 2016, Accessed March 2018. https://​www.​aphis.​usda.​gov/​animal_​welfare/​downloads/​reports/​Annual-Report-Animal-Usage-by-FY2016.​pdf.​
11.
go back to reference Leary SA. The Exclusion of Mice, Rats, and Birds: The American Anti-Vivisection Society; 2017, pp. 12–13. http://aavs.org/assets/uploads/2017/08/2017-1_av-magazine_exclusion-mice-rats-birds.pdf?x82509. Leary SA. The Exclusion of Mice, Rats, and Birds: The American Anti-Vivisection Society; 2017, pp. 12–13. http://​aavs.​org/​assets/​uploads/​2017/​08/​2017-1_​av-magazine_​exclusion-mice-rats-birds.​pdf?​x82509.​
12.
go back to reference MacLaughlin K. China finally setting guidelines for treating lab animals. 2016. https://doi.org/10.1126/science.aaf9812. http://www.sciencemag.org/news/2016/03/china-finally-setting-guidelines-treating-lab-animals. Accessed Feb 2017. MacLaughlin K. China finally setting guidelines for treating lab animals. 2016. https://​doi.​org/​10.​1126/​science.​aaf9812.​ http://www.sciencemag.org/news/2016/03/china-finally-setting-guidelines-treating-lab-animals. Accessed Feb 2017.
14.
go back to reference Bundesministerium für Ernährung und Landwirtschaft. Verwendung von Versuchstieren im Jahr 2016. 2016. https://www.bmel.de/DE/Tier/Tierschutz/_texte/TierschutzTierforschung.html?docId=10323474. Accessed Mar 2018. Bundesministerium für Ernährung und Landwirtschaft. Verwendung von Versuchstieren im Jahr 2016. 2016. https://​www.​bmel.​de/​DE/​Tier/​Tierschutz/​_​texte/​TierschutzTierfo​rschung.​html?​docId=​10323474.​ Accessed Mar 2018.
15.
go back to reference Russell W, Burch R. The Principles of Humane Experimental Technique. Reprinted 1992 ed. UK: Wheathampstead: Universities Federation for Animal Welfare; 1959. Russell W, Burch R. The Principles of Humane Experimental Technique. Reprinted 1992 ed. UK: Wheathampstead: Universities Federation for Animal Welfare; 1959.
16.
go back to reference Latham SR. U.s. law and animal experimentation: A critical primer. Hast Cent Rep. 2012; 42(6):35–9.CrossRef Latham SR. U.s. law and animal experimentation: A critical primer. Hast Cent Rep. 2012; 42(6):35–9.CrossRef
17.
go back to reference Tannenbaum J, Rowan AN. Rethinking the morality of animal research. Hast Cent Rep. 1985; 15:32–43.CrossRef Tannenbaum J, Rowan AN. Rethinking the morality of animal research. Hast Cent Rep. 1985; 15:32–43.CrossRef
20.
go back to reference Benfenati E, Benign R, DeMarini DM, Helma C, Kirkland D, Martin TM, Mazzatorta P, Ouèdraogo-Arras G, Richard AM, Schilter B, Schoonen WGEJ, Snyder RD, Yang C. Predictive models for carcinogenicity and mutagenicity: Frameworks, state-of-the-art, and perspectives. J Environ Sci Health C. 2009; 27:57–90.CrossRef Benfenati E, Benign R, DeMarini DM, Helma C, Kirkland D, Martin TM, Mazzatorta P, Ouèdraogo-Arras G, Richard AM, Schilter B, Schoonen WGEJ, Snyder RD, Yang C. Predictive models for carcinogenicity and mutagenicity: Frameworks, state-of-the-art, and perspectives. J Environ Sci Health C. 2009; 27:57–90.CrossRef
21.
go back to reference Kleinstreuer NC, Yang J, Berg EL, Knudsen T, Richard AM, Martin M, Reif DM, Judson R, Polokoff M, Dix DJ, et al. Phenotypic screening of the toxcast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol. 2014; 32(6):583–91.PubMedCrossRef Kleinstreuer NC, Yang J, Berg EL, Knudsen T, Richard AM, Martin M, Reif DM, Judson R, Polokoff M, Dix DJ, et al. Phenotypic screening of the toxcast chemical library to classify toxic and therapeutic mechanisms. Nat Biotechnol. 2014; 32(6):583–91.PubMedCrossRef
22.
go back to reference Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, Zhao T, Austin CP, Simeonov A. Modelling the tox21 10 k chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun. 2016; 7:10425.PubMedPubMedCentralCrossRef Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, Zhao T, Austin CP, Simeonov A. Modelling the tox21 10 k chemical profiles for in vivo toxicity prediction and mechanism characterization. Nat Commun. 2016; 7:10425.PubMedPubMedCentralCrossRef
23.
go back to reference Tritthart HA. In vitro test systems in cancer research. ALTEX. 1996; 13(3):118–24.PubMed Tritthart HA. In vitro test systems in cancer research. ALTEX. 1996; 13(3):118–24.PubMed
24.
go back to reference Teicher BA. In vivo/ex vivo and in situ assays used in cancer research: a brief review. Toxicol Pathol. 2009; 37(1):114–22.PubMedCrossRef Teicher BA. In vivo/ex vivo and in situ assays used in cancer research: a brief review. Toxicol Pathol. 2009; 37(1):114–22.PubMedCrossRef
26.
go back to reference Viceconti M HP. The virtual physiological human: Ten years after. Annu Rev Biomed Eng. 2016; 18:103–23.PubMedCrossRef Viceconti M HP. The virtual physiological human: Ten years after. Annu Rev Biomed Eng. 2016; 18:103–23.PubMedCrossRef
31.
go back to reference Raies AB, Bajic VB. In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016; 6(2):147–72.PubMedPubMedCentralCrossRef Raies AB, Bajic VB. In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016; 6(2):147–72.PubMedPubMedCentralCrossRef
32.
go back to reference Workman P, Aboagye E, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA, ad hoc committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010; 102:1555–77.PubMedPubMedCentralCrossRef Workman P, Aboagye E, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA, ad hoc committee of the National Cancer Research Institute. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010; 102:1555–77.PubMedPubMedCentralCrossRef
33.
go back to reference Klein S, Maggioni S, Bucher J, Mueller D, Niklas J, Shevchenko V, Mauch K, Heinzle E, Noor F. In silico modeling for the prediction of dose and pathway-related adverse effects in humans from in vitro repeated-dose studies. Toxicol Sci. 2015; 149:55–66.PubMedCrossRef Klein S, Maggioni S, Bucher J, Mueller D, Niklas J, Shevchenko V, Mauch K, Heinzle E, Noor F. In silico modeling for the prediction of dose and pathway-related adverse effects in humans from in vitro repeated-dose studies. Toxicol Sci. 2015; 149:55–66.PubMedCrossRef
34.
go back to reference Yee NS, Ignatenko N, Finnberg N, Lee N, Stairs D. Animal models of cancer biology. Cancer Growth Metastasis. 2015; 8(Suppl 1):115–8.PubMedPubMedCentral Yee NS, Ignatenko N, Finnberg N, Lee N, Stairs D. Animal models of cancer biology. Cancer Growth Metastasis. 2015; 8(Suppl 1):115–8.PubMedPubMedCentral
35.
go back to reference House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol. 2014; 4(26):26.PubMedPubMedCentral House CD, Hernandez L, Annunziata CM. Recent technological advances in using mouse models to study ovarian cancer. Front Oncol. 2014; 4(26):26.PubMedPubMedCentral
36.
go back to reference Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017; 9(2):137–53.PubMedCrossRef Kersten K, de Visser KE, van Miltenburg MH, Jonkers J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol Med. 2017; 9(2):137–53.PubMedCrossRef
37.
go back to reference Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer. 2017; 17:751–65.PubMedCrossRef Gengenbacher N, Singhal M, Augustin HG. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nat Rev Cancer. 2017; 17:751–65.PubMedCrossRef
38.
go back to reference Vitale G, Gaudenzi G, Circelli L, Manzoni M, Bassi A, Fioritti N, Faggiano A, Colao A, NIKE group. Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer. 2017; 24(1):1–12.CrossRef Vitale G, Gaudenzi G, Circelli L, Manzoni M, Bassi A, Fioritti N, Faggiano A, Colao A, NIKE group. Animal models of medullary thyroid cancer: state of the art and view to the future. Endocr Relat Cancer. 2017; 24(1):1–12.CrossRef
39.
go back to reference Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther. 2009; 85:217–21.PubMedCrossRef Rubio-Viqueira B, Hidalgo M. Direct in vivo xenograft tumor model for predicting chemotherapeutic drug response in cancer patients. Clin Pharmacol Ther. 2009; 85:217–21.PubMedCrossRef
40.
go back to reference Kariyil BJ. In vivo models in cancer research. Int J Curr Res. 2015; 7:24399–404. Kariyil BJ. In vivo models in cancer research. Int J Curr Res. 2015; 7:24399–404.
41.
go back to reference Yadav AK, Srikrishna S, Gupta SC. Cancer drug development using drosophila as an in vivo tool: From bedside to bench and back. Trends Pharmacol Sci. 2016; 37:789–806.PubMedCrossRef Yadav AK, Srikrishna S, Gupta SC. Cancer drug development using drosophila as an in vivo tool: From bedside to bench and back. Trends Pharmacol Sci. 2016; 37:789–806.PubMedCrossRef
42.
go back to reference Astone M, Dankert EN, Alam SkK, Hoeppner LH. Fishing for cures: The allure of using zebrafish to develop precision oncology therapies. npj Precis Oncol. 2017; 1(39):39.PubMedPubMedCentralCrossRef Astone M, Dankert EN, Alam SkK, Hoeppner LH. Fishing for cures: The allure of using zebrafish to develop precision oncology therapies. npj Precis Oncol. 2017; 1(39):39.PubMedPubMedCentralCrossRef
43.
go back to reference Deryugina EIA, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008; 130(6):1119–30.PubMedPubMedCentralCrossRef Deryugina EIA, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem Cell Biol. 2008; 130(6):1119–30.PubMedPubMedCentralCrossRef
44.
go back to reference Kain KH, Miller JW, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, Barnett JV, Zijlstra A. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn. 2014; 243(2):216–28.PubMedCrossRef Kain KH, Miller JW, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, Barnett JV, Zijlstra A. The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn. 2014; 243(2):216–28.PubMedCrossRef
45.
go back to reference Gould SE, Junttila MR, de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med. 2015; 21:431–9.PubMedCrossRef Gould SE, Junttila MR, de Sauvage FJ. Translational value of mouse models in oncology drug development. Nat Med. 2015; 21:431–9.PubMedCrossRef
46.
go back to reference Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016; 4:12.PubMedPubMedCentralCrossRef Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC. In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotechnol. 2016; 4:12.PubMedPubMedCentralCrossRef
47.
go back to reference Cavanaugh H, Haier J. Basic Tissue and Cell Culture in Cancer Research. NY: Wiley; 2005. Chap. Preclinical Methods for Human Cancer. Cavanaugh H, Haier J. Basic Tissue and Cell Culture in Cancer Research. NY: Wiley; 2005. Chap. Preclinical Methods for Human Cancer.
48.
go back to reference Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. journal of visualized experiments. JoVE. 2014; 88:e51046. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. journal of visualized experiments. JoVE. 2014; 88:e51046.
49.
go back to reference Raghavan S, Mehta P, Horst EN, Ward MR, Rowley KR, Mehta G. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016; 7(13):16948–61.PubMedPubMedCentralCrossRef Raghavan S, Mehta P, Horst EN, Ward MR, Rowley KR, Mehta G. Comparative analysis of tumor spheroid generation techniques for differential in vitro drug toxicity. Oncotarget. 2016; 7(13):16948–61.PubMedPubMedCentralCrossRef
50.
go back to reference Lee H, Park W, Ryu H, Jeon NL. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics. 2014; 8(5):054102.PubMedPubMedCentralCrossRef Lee H, Park W, Ryu H, Jeon NL. A microfluidic platform for quantitative analysis of cancer angiogenesis and intravasation. Biomicrofluidics. 2014; 8(5):054102.PubMedPubMedCentralCrossRef
51.
go back to reference Wong AD, Searson PC. Mitosis-mediated intravasation in a tissue-engineered tumor-microvessel platform. Cancer Res. 2017; 77(22):6453–61.PubMedCrossRef Wong AD, Searson PC. Mitosis-mediated intravasation in a tissue-engineered tumor-microvessel platform. Cancer Res. 2017; 77(22):6453–61.PubMedCrossRef
52.
go back to reference Jijakli K, Khraiwesh B, Fu W, Luo L, Alzahmi A, Koussa J, Chaiboonchoe A, Kirmizialtin S, Yen L, Salehi-Ashtiani K. The in vitro selection world. Methods. 2016; 106:3–13.PubMedCrossRef Jijakli K, Khraiwesh B, Fu W, Luo L, Alzahmi A, Koussa J, Chaiboonchoe A, Kirmizialtin S, Yen L, Salehi-Ashtiani K. The in vitro selection world. Methods. 2016; 106:3–13.PubMedCrossRef
54.
go back to reference European Food Safety Authority. Modern methodologies and tools for human hazard assessment of chemicals. EFSA J. 2014; 12(3638):87. European Food Safety Authority. Modern methodologies and tools for human hazard assessment of chemicals. EFSA J. 2014; 12(3638):87.
56.
go back to reference Ahamer H, Devaney TTJ, Tritthart HA. Fractal dimension for a cancer invasion model. Fractals Compl Geom Patt Scaling Nat Soc. 2001; 9(01):61–76. Ahamer H, Devaney TTJ, Tritthart HA. Fractal dimension for a cancer invasion model. Fractals Compl Geom Patt Scaling Nat Soc. 2001; 9(01):61–76.
57.
go back to reference Turin I, Schiavo R, Maestri M, Luinetti O, Bello BD, Paulli M, Dionigi P, Roccio M, Spinillo A, Ferulli F, Tanzi M, Maccario R, Montagna D, Pedrazzoli P. In vitro efficient expansion of tumor cells deriving from different types of human tumor samples. Med Sci. 2014; 2(2):70–81. Turin I, Schiavo R, Maestri M, Luinetti O, Bello BD, Paulli M, Dionigi P, Roccio M, Spinillo A, Ferulli F, Tanzi M, Maccario R, Montagna D, Pedrazzoli P. In vitro efficient expansion of tumor cells deriving from different types of human tumor samples. Med Sci. 2014; 2(2):70–81.
58.
go back to reference Mackenzie I. New in vitro assays for studying the biology of cancer stem cells. In: NC3Rs research portfolio. London: National Centre for the Replacement Refinement & Reduction of Animals in Research: 2011. p. 37–40. https: //www.nc3rs.org.uk/sites/default/files/documents/Corporate_publications/Research_Reviews/Research\%20Review\%. Mackenzie I. New in vitro assays for studying the biology of cancer stem cells. In: NC3Rs research portfolio. London: National Centre for the Replacement Refinement & Reduction of Animals in Research: 2011. p. 37–40. https: //www.nc3rs.org.uk/sites/default/files/documents/Corporate_publications/Research_Reviews/Research\%20Review\%.
59.
go back to reference Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A, Coggi G, Flavin R, Bosari S, Loda M. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS. 2010; 107(18):8352–8356.PubMedPubMedCentralCrossRef Vaira V, Fedele G, Pyne S, Fasoli E, Zadra G, Bailey D, Snyder E, Faversani A, Coggi G, Flavin R, Bosari S, Loda M. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. PNAS. 2010; 107(18):8352–8356.PubMedPubMedCentralCrossRef
60.
go back to reference Aref A, Barbie D. Ex Vivo Engineering of the Tumor Microenvironment. Berlin: Springer; 2017, p. 135.CrossRef Aref A, Barbie D. Ex Vivo Engineering of the Tumor Microenvironment. Berlin: Springer; 2017, p. 135.CrossRef
61.
go back to reference Jeanquartier F, Jean-Quartier C, Schreck T, Cemernek D, Holzinger A. Integrating open data on cancer in support to tumor growth analysis. Inf Tech Bio Med Inf Lect Notes Comput Sci Lect Notes Comput Sci LNCS. 2016; 9832(Information Technology in Bio- and Medic):49–66. Jeanquartier F, Jean-Quartier C, Schreck T, Cemernek D, Holzinger A. Integrating open data on cancer in support to tumor growth analysis. Inf Tech Bio Med Inf Lect Notes Comput Sci Lect Notes Comput Sci LNCS. 2016; 9832(Information Technology in Bio- and Medic):49–66.
62.
go back to reference Weinstein JN, Collisson EA, Mills GB, Shaw KM, Ozenberger BA, Ellrott K, Cancer Genome Atlas Research Network. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013; 45(10):1113–20.PubMedPubMedCentralCrossRef Weinstein JN, Collisson EA, Mills GB, Shaw KM, Ozenberger BA, Ellrott K, Cancer Genome Atlas Research Network. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013; 45(10):1113–20.PubMedPubMedCentralCrossRef
63.
go back to reference Riggins G J SRL. Genome and genetic resources from the cancer genome anatomy project. Hum Mol Genet. 2001; 7:663–7.CrossRef Riggins G J SRL. Genome and genetic resources from the cancer genome anatomy project. Hum Mol Genet. 2001; 7:663–7.CrossRef
64.
go back to reference Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE, Liu Z, Donahue M, Julian B, Khan M, Wadden D, Smith IC, Lam D, Liberzon A, Toder C, Bagul M, Orzechowski M, Enache OM, Piccioni F, Johnson SA, Lyons NJ, Berger AH, Shamji AF, Brooks AN, Vrcic A, Flynn C, Rosains J, Takeda DY, Hu R, Davison D, Lamb J, Ardlie K, Hogstrom L, Greenside P, Gray NS, Clemons PA, Silver S, Wu X, Zhao W-N, Read-Button W, Wu X, Haggarty SJ, Ronco LV, Boehm JS, Schreiber SL, Doench JG, Bittker JA, Root DE, Wong B, Golub TR. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017; 171(6):1437–1452.e17. https://doi.org/10.1016/j.cell.2017.10.049.PubMedCrossRef Subramanian A, Narayan R, Corsello SM, Peck DD, Natoli TE, Lu X, Gould J, Davis JF, Tubelli AA, Asiedu JK, Lahr DL, Hirschman JE, Liu Z, Donahue M, Julian B, Khan M, Wadden D, Smith IC, Lam D, Liberzon A, Toder C, Bagul M, Orzechowski M, Enache OM, Piccioni F, Johnson SA, Lyons NJ, Berger AH, Shamji AF, Brooks AN, Vrcic A, Flynn C, Rosains J, Takeda DY, Hu R, Davison D, Lamb J, Ardlie K, Hogstrom L, Greenside P, Gray NS, Clemons PA, Silver S, Wu X, Zhao W-N, Read-Button W, Wu X, Haggarty SJ, Ronco LV, Boehm JS, Schreiber SL, Doench JG, Bittker JA, Root DE, Wong B, Golub TR. A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell. 2017; 171(6):1437–1452.e17. https://​doi.​org/​10.​1016/​j.​cell.​2017.​10.​049.PubMedCrossRef
65.
go back to reference The Humane Society of the United States and Procter & Gamble. AltTox: Toxicity testing overview. Last updated: February 19, 2016. http://alttox.org/mapp/toxicity-testing-overview/. Accessed Mar 2017. The Humane Society of the United States and Procter & Gamble. AltTox: Toxicity testing overview. Last updated: February 19, 2016. http://​alttox.​org/​mapp/​toxicity-testing-overview/​.​ Accessed Mar 2017.
66.
go back to reference Judson R, Houck K, Martin M, Knudsen T, Thomas RS, Sipes N, Shah I, Wambaugh J, Crofton K. In vitro and modelling approaches to risk assessment from the us environmental protection agency toxcast programme. Basic Clin Pharmacol Toxicol. 2014; 115(1):69–76.PubMedCrossRef Judson R, Houck K, Martin M, Knudsen T, Thomas RS, Sipes N, Shah I, Wambaugh J, Crofton K. In vitro and modelling approaches to risk assessment from the us environmental protection agency toxcast programme. Basic Clin Pharmacol Toxicol. 2014; 115(1):69–76.PubMedCrossRef
67.
go back to reference Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, Yamada H. Open tg-gates: a large-scale toxicogenomics database. Nucleic Acids Res. 2015; 43(Database issue):921–7.CrossRef Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T, Yamada H. Open tg-gates: a large-scale toxicogenomics database. Nucleic Acids Res. 2015; 43(Database issue):921–7.CrossRef
68.
go back to reference Mulas F, Li A, Sherr DH, Monti S. Network-based analysis of transcriptional profiles from chemical perturbations experiments. BMC Bioinformatics. 2017; 18(Suppl 5):130.PubMedPubMedCentralCrossRef Mulas F, Li A, Sherr DH, Monti S. Network-based analysis of transcriptional profiles from chemical perturbations experiments. BMC Bioinformatics. 2017; 18(Suppl 5):130.PubMedPubMedCentralCrossRef
69.
go back to reference Hofree M, Carter H, Kreisberg JF, Bandyopadhyay S, Mischel PS, Friend S, Ideker T. Challenges in identifying cancer genes by analysis of exome sequencing data. Nat Commun. 2016; 7:12096.PubMedPubMedCentralCrossRef Hofree M, Carter H, Kreisberg JF, Bandyopadhyay S, Mischel PS, Friend S, Ideker T. Challenges in identifying cancer genes by analysis of exome sequencing data. Nat Commun. 2016; 7:12096.PubMedPubMedCentralCrossRef
70.
go back to reference Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005; 21(15):3201–12.PubMedCrossRef Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics. 2005; 21(15):3201–12.PubMedCrossRef
71.
go back to reference Kaufman L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis, vol 344. NY: Wiley; 2009. Kaufman L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis, vol 344. NY: Wiley; 2009.
72.
go back to reference Geman D, Ochs M, Price ND, Tomasetti C, Younes L. An argument for mechanism-based statistical inference in cancer. Hum Genet. 2015; 134(5):479–95.PubMedCrossRef Geman D, Ochs M, Price ND, Tomasetti C, Younes L. An argument for mechanism-based statistical inference in cancer. Hum Genet. 2015; 134(5):479–95.PubMedCrossRef
73.
74.
go back to reference Piraino SW, Furney SJ. Beyond the exome: the role of non-coding somatic mutations in cancer. Ann Oncol. 2016; 27(2):240–8.PubMedCrossRef Piraino SW, Furney SJ. Beyond the exome: the role of non-coding somatic mutations in cancer. Ann Oncol. 2016; 27(2):240–8.PubMedCrossRef
75.
go back to reference Cuykendall TN, Rubin MA, Khurana E. Non-coding genetic variation in cancer. Curr Opin Syst Biol. 2017; 1(Supplement C):9–15. Future of Systems Biology, Genomics and epigenomics.CrossRef Cuykendall TN, Rubin MA, Khurana E. Non-coding genetic variation in cancer. Curr Opin Syst Biol. 2017; 1(Supplement C):9–15. Future of Systems Biology, Genomics and epigenomics.CrossRef
76.
go back to reference Morrow JJ, Scacheri PC. Epigenetics, enhancers, and cancer In: Berger NA, editor. Energy Balance and Cancer. Switzerland: Springer: 2016. p. 29–53. Morrow JJ, Scacheri PC. Epigenetics, enhancers, and cancer In: Berger NA, editor. Energy Balance and Cancer. Switzerland: Springer: 2016. p. 29–53.
77.
go back to reference Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, Khimulya G, Kasukawa T, FANTOM Consortium, DrablÃs F. Epifactors: a comprehensive database of human epigenetic factors and complexes. Database. 2015; 2015:bav067.PubMedPubMedCentralCrossRef Medvedeva YA, Lennartsson A, Ehsani R, Kulakovskiy IV, Vorontsov IE, Panahandeh P, Khimulya G, Kasukawa T, FANTOM Consortium, DrablÃs F. Epifactors: a comprehensive database of human epigenetic factors and complexes. Database. 2015; 2015:bav067.PubMedPubMedCentralCrossRef
78.
go back to reference Johnson C, Warmoes MO, Shen X, Locasale JW. Epigenetics and cancer metabolism. Cancer Lett. 2015; 356(2):209–314.CrossRef Johnson C, Warmoes MO, Shen X, Locasale JW. Epigenetics and cancer metabolism. Cancer Lett. 2015; 356(2):209–314.CrossRef
79.
go back to reference Heyn H, Vidal E, Ferreira HJ, Vizoso M, Sayols S, Gomez A, Moran S, Boque-Sastre R, Guil S, Martinez-Cardus A, Lin CY, Royo R, Sanchez-Mut JV, Martinez R, Gut M, Torrents D, Orozco M, Gut I, Young RA, Esteller M. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol. 2016; 17:11.PubMedPubMedCentralCrossRef Heyn H, Vidal E, Ferreira HJ, Vizoso M, Sayols S, Gomez A, Moran S, Boque-Sastre R, Guil S, Martinez-Cardus A, Lin CY, Royo R, Sanchez-Mut JV, Martinez R, Gut M, Torrents D, Orozco M, Gut I, Young RA, Esteller M. Epigenomic analysis detects aberrant super-enhancer DNA methylation in human cancer. Genome Biol. 2016; 17:11.PubMedPubMedCentralCrossRef
80.
81.
82.
go back to reference Porta-Pardo E, Garcia-Alonso L, Hrabe T, Dopazo J, Godzik A. A pan-cancer catalogue of cancer driver protein interaction interfaces. PLOS. 2015; 11:e1004518. Porta-Pardo E, Garcia-Alonso L, Hrabe T, Dopazo J, Godzik A. A pan-cancer catalogue of cancer driver protein interaction interfaces. PLOS. 2015; 11:e1004518.
83.
go back to reference Maximova T, Mofatt R, Ma B, Nussinov R, Shehu A. Principles and overview of sampling methods for modeling macromolecular structure and dynamics. PLOS Comput Biol. 2016; 12:e1004619.PubMedPubMedCentralCrossRef Maximova T, Mofatt R, Ma B, Nussinov R, Shehu A. Principles and overview of sampling methods for modeling macromolecular structure and dynamics. PLOS Comput Biol. 2016; 12:e1004619.PubMedPubMedCentralCrossRef
84.
go back to reference Smolle J, Hofmann-Wellenhof R, Kofler R, Cerroni L, Haas J, Kerl H. Computer simulations of histologic patterns in melanoma using a cellular automaton provide correlations with prognosis. J Investig Dermatol. 1995; 105:797–801.PubMedCrossRef Smolle J, Hofmann-Wellenhof R, Kofler R, Cerroni L, Haas J, Kerl H. Computer simulations of histologic patterns in melanoma using a cellular automaton provide correlations with prognosis. J Investig Dermatol. 1995; 105:797–801.PubMedCrossRef
85.
go back to reference Patil SA, Kuchanur MB. Lung cancer classification using image processing. Int J Eng Innov Technol. 2012; 2(30):37–42. Patil SA, Kuchanur MB. Lung cancer classification using image processing. Int J Eng Innov Technol. 2012; 2(30):37–42.
86.
go back to reference Vargas A, Angeli M, Pastrello C, McQuaid R, Li H, Jurisicova A, Jurisica I. Robust quantitative scratch assay. Bioinformatics. 2016; 2(9):1439–40.CrossRef Vargas A, Angeli M, Pastrello C, McQuaid R, Li H, Jurisicova A, Jurisica I. Robust quantitative scratch assay. Bioinformatics. 2016; 2(9):1439–40.CrossRef
87.
go back to reference Lu W, Wang J, Zhang HH. Computerized PET/CT image analysis in the evaluation of tumour response to therapy. Br J Radiol. 2015; 88(1048):20140625–20140625.PubMedPubMedCentralCrossRef Lu W, Wang J, Zhang HH. Computerized PET/CT image analysis in the evaluation of tumour response to therapy. Br J Radiol. 2015; 88(1048):20140625–20140625.PubMedPubMedCentralCrossRef
88.
go back to reference Tiwari S, Bhargava R. Extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis. Yale J Biol Med. 2015; 88:131–43.PubMedPubMedCentral Tiwari S, Bhargava R. Extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis. Yale J Biol Med. 2015; 88:131–43.PubMedPubMedCentral
89.
go back to reference Christopher R, Dhiman A, Fox J, Gendelman R, Haberitcher T, Kagle D, Spizz G, Khalil I, Hill C. Data-driven computer simulation of human cancer cell. Ann N Y Acad Sci. 2004; 1020:132–53.PubMedCrossRef Christopher R, Dhiman A, Fox J, Gendelman R, Haberitcher T, Kagle D, Spizz G, Khalil I, Hill C. Data-driven computer simulation of human cancer cell. Ann N Y Acad Sci. 2004; 1020:132–53.PubMedCrossRef
90.
go back to reference Nilsson A, Nielsen J. Genome scale metabolic modeling of cancer. Metab Eng. 2016. https://doi.org/10.1016/j.ymben.2016.10.022. Nilsson A, Nielsen J. Genome scale metabolic modeling of cancer. Metab Eng. 2016. https://​doi.​org/​10.​1016/​j.​ymben.​2016.​10.​022.​
91.
go back to reference Beerenwinkel N, Greenman CD, Lagergren J. Computational cancer biology: An evolutionary perspective. PLoS Comput Biol. 2016; 12(2):1004717.CrossRef Beerenwinkel N, Greenman CD, Lagergren J. Computational cancer biology: An evolutionary perspective. PLoS Comput Biol. 2016; 12(2):1004717.CrossRef
92.
go back to reference Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JM, Hlatky L, Hahnfeldt P. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol. 2014; 10(8):1003800.CrossRef Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JM, Hlatky L, Hahnfeldt P. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol. 2014; 10(8):1003800.CrossRef
94.
go back to reference Kohonen P, Ceder R, Smit I, Hongisto V, Myatt G, Hardy B, Spjuth O, Grafström R. Cancer biology, toxicology and alternative methods development go hand-in-hand. Basic Clin Pharmacol Toxicol. 2014; 115:50–8.PubMedCrossRef Kohonen P, Ceder R, Smit I, Hongisto V, Myatt G, Hardy B, Spjuth O, Grafström R. Cancer biology, toxicology and alternative methods development go hand-in-hand. Basic Clin Pharmacol Toxicol. 2014; 115:50–8.PubMedCrossRef
95.
go back to reference Langley GR, Adcock IM, Busquet F, Crofton KM, Csernok E, Giese C, Heinonen T, Herrmann K, Hofmann-Apitius M, Landesmann B, et al. Towards a 21st-century roadmap for biomedical research and drug discovery: consensus report and recommendations. Drug Discov Today. 2017; 22(2):327–39.PubMedCrossRef Langley GR, Adcock IM, Busquet F, Crofton KM, Csernok E, Giese C, Heinonen T, Herrmann K, Hofmann-Apitius M, Landesmann B, et al. Towards a 21st-century roadmap for biomedical research and drug discovery: consensus report and recommendations. Drug Discov Today. 2017; 22(2):327–39.PubMedCrossRef
96.
go back to reference Organisation de Coopération et de Développement Économiques. Series on testing and assessment: Guidance document on developing and assessing adverse outcome pathways. Technical Report 184, Environment, OECD, Health and Safety Publications. 2017. Organisation de Coopération et de Développement Économiques. Series on testing and assessment: Guidance document on developing and assessing adverse outcome pathways. Technical Report 184, Environment, OECD, Health and Safety Publications. 2017.
97.
go back to reference Perkins EJ, Antczak P, Burgoon L, Falciani F, Garcia-Reyero N, Gutsell S, Hodges G, Kienzler A, Knapen D, McBride M, Willett C. Adverse outcome pathways for regulatory applications: Examination of four case studies with different degrees of completeness and scientific confidence. Toxicol Sci. 2015; 148:14–25.PubMedCrossRef Perkins EJ, Antczak P, Burgoon L, Falciani F, Garcia-Reyero N, Gutsell S, Hodges G, Kienzler A, Knapen D, McBride M, Willett C. Adverse outcome pathways for regulatory applications: Examination of four case studies with different degrees of completeness and scientific confidence. Toxicol Sci. 2015; 148:14–25.PubMedCrossRef
98.
go back to reference Boobis AR, Cohen SM, Dellarco V, McGregor D, Vickers MEBMC, Willcocks D, Farland W. Ipcs framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol. 2006; 36:781–92.PubMedCrossRef Boobis AR, Cohen SM, Dellarco V, McGregor D, Vickers MEBMC, Willcocks D, Farland W. Ipcs framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol. 2006; 36:781–92.PubMedCrossRef
99.
go back to reference Kotlyar M, Fortney K, Jurisica I. Network-based characterization of drug-regulated genes, drug targets, and toxicity. Methods. 2012; 57(4):499–507.PubMedCrossRef Kotlyar M, Fortney K, Jurisica I. Network-based characterization of drug-regulated genes, drug targets, and toxicity. Methods. 2012; 57(4):499–507.PubMedCrossRef
100.
101.
go back to reference Malik A, Singh H, Andrabi M, Husain SA, Ahmad S. Databases and qsar for cancer research. Cancer Informat. 2006; 2:99–111.CrossRef Malik A, Singh H, Andrabi M, Husain SA, Ahmad S. Databases and qsar for cancer research. Cancer Informat. 2006; 2:99–111.CrossRef
102.
go back to reference Menden M, Iorio F, Garnett M, McDermott U, Benes C, Ballester PJ, Saez-Rodriguez J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE. 2013; 8(4):61318.CrossRef Menden M, Iorio F, Garnett M, McDermott U, Benes C, Ballester PJ, Saez-Rodriguez J. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE. 2013; 8(4):61318.CrossRef
103.
go back to reference Ghersi D, Singh M. Interaction-based discovery of functionally important genes in cancers. Nucl Acids Res. 2014; 42(3):e18.PubMedCrossRef Ghersi D, Singh M. Interaction-based discovery of functionally important genes in cancers. Nucl Acids Res. 2014; 42(3):e18.PubMedCrossRef
104.
go back to reference Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber D, Stratton M, Benes C, McDermott U, Garnett M. Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013; 41(Database issue):955–61. Yang W, Soares J, Greninger P, Edelman EJ, Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, Ramaswamy S, Futreal PA, Haber D, Stratton M, Benes C, McDermott U, Garnett M. Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013; 41(Database issue):955–61.
105.
go back to reference Villaverde AF, Henriques D, Smallbone K, Bongard S, Schmid J, Cicin-Sain D, Crombach A, Saez-Rodriguez J, Mauch K, Balsa-Canto E, Mendes P, Jaeger J, Banga JR. Biopredyn-bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Syst Biol. 2015; 9:8.PubMedPubMedCentralCrossRef Villaverde AF, Henriques D, Smallbone K, Bongard S, Schmid J, Cicin-Sain D, Crombach A, Saez-Rodriguez J, Mauch K, Balsa-Canto E, Mendes P, Jaeger J, Banga JR. Biopredyn-bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Syst Biol. 2015; 9:8.PubMedPubMedCentralCrossRef
106.
go back to reference Hochheiser H, Castine M, Harris D, Savova G, Jacobson RS. An information model for computable cancer phenotypes. BMC Med Inform Decis Mak. 2016; 16(1):121.PubMedPubMedCentralCrossRef Hochheiser H, Castine M, Harris D, Savova G, Jacobson RS. An information model for computable cancer phenotypes. BMC Med Inform Decis Mak. 2016; 16(1):121.PubMedPubMedCentralCrossRef
107.
go back to reference Jeanquartier F, Jean-Quartier C, Kotlyar M, Tokar T, Hauschild A-C, Jurisica I, Holzinger A. Machine learning for in silico modeling of tumor growth. In: Machine Learning for Health Informatics. Cham: Springer: 2016. p. 415–34. Jeanquartier F, Jean-Quartier C, Kotlyar M, Tokar T, Hauschild A-C, Jurisica I, Holzinger A. Machine learning for in silico modeling of tumor growth. In: Machine Learning for Health Informatics. Cham: Springer: 2016. p. 415–34.
108.
go back to reference Gonçalves E, Bucher J, Ryll A, Niklas J, Mauch K, Klamt S, Rocha M, Saez-Rodriguez J. Bridging the layers: Towards integration of signal transduction, regulation and metabolism into mathematical models. Mol BioSyst. 2013; 9:1576–83.PubMedCrossRef Gonçalves E, Bucher J, Ryll A, Niklas J, Mauch K, Klamt S, Rocha M, Saez-Rodriguez J. Bridging the layers: Towards integration of signal transduction, regulation and metabolism into mathematical models. Mol BioSyst. 2013; 9:1576–83.PubMedCrossRef
110.
go back to reference Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012; 366:489–91.PubMedCrossRef Mirnezami R, Nicholson J, Darzi A. Preparing for precision medicine. N Engl J Med. 2012; 366:489–91.PubMedCrossRef
111.
go back to reference Uhlén M, Björling E, Agaton C, Szigyarto C, Amini B, Andersen E, Andersson A, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund M, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, I O, E O, J O, L P, A P, Rimini R, Rockberg J, Runeson M, Sivertsson A, Sköllermo A, J S, M S, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, U W, Xu L, Hober S, Pont’́en F. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005; 4(12):1920–32.PubMedCrossRef Uhlén M, Björling E, Agaton C, Szigyarto C, Amini B, Andersen E, Andersson A, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund M, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Odling J, Oksvold P, I O, E O, J O, L P, A P, Rimini R, Rockberg J, Runeson M, Sivertsson A, Sköllermo A, J S, M S, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, U W, Xu L, Hober S, Pont’́en F. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics. 2005; 4(12):1920–32.PubMedCrossRef
112.
go back to reference Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist P-H, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, Ponten F. A pathology atlas of the human cancer transcriptome. Sci (New York, NY). 017;357(6352). https://doi.org/10.1126/science.aan2507. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist P-H, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, Ponten F. A pathology atlas of the human cancer transcriptome. Sci (New York, NY). 017;357(6352). https://​doi.​org/​10.​1126/​science.​aan2507.​
113.
go back to reference Locasale JW, Melman T, Song S, Yang X, Swanson KD, Cantley LC, Wong ET, Asara JM. Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol Cell Proteomics. 2012; 11(6):M111.014688.PubMedPubMedCentralCrossRef Locasale JW, Melman T, Song S, Yang X, Swanson KD, Cantley LC, Wong ET, Asara JM. Metabolomics of human cerebrospinal fluid identifies signatures of malignant glioma. Mol Cell Proteomics. 2012; 11(6):M111.014688.PubMedPubMedCentralCrossRef
114.
go back to reference McDunn JE, Li Z, Adam K-P, Neri BP, Wolfert RL, Milburn MV, Lotan Y, Wheeler TM. Metabolomic signatures of aggressive prostate cancer. Prostate. 2013; 3(73):1547–60.CrossRef McDunn JE, Li Z, Adam K-P, Neri BP, Wolfert RL, Milburn MV, Lotan Y, Wheeler TM. Metabolomic signatures of aggressive prostate cancer. Prostate. 2013; 3(73):1547–60.CrossRef
115.
go back to reference Farshidfar F, Weljie AM, Kopciuk KA, Hilsden R, McGregor SE, Buie WD, MacLean A, Vogel HJ, Bathe OF. A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics. Br J Cancer. 2016; 115:848–57.PubMedPubMedCentralCrossRef Farshidfar F, Weljie AM, Kopciuk KA, Hilsden R, McGregor SE, Buie WD, MacLean A, Vogel HJ, Bathe OF. A validated metabolomic signature for colorectal cancer: exploration of the clinical value of metabolomics. Br J Cancer. 2016; 115:848–57.PubMedPubMedCentralCrossRef
116.
go back to reference Belizário JE, Sangiuliano BA, Perez-Sosa M, Neyra JM, Moreira DF. Using pharmacogenomic databases for discovering patient-target genes and small molecule candidates to cancer therapy. Front Pharmacol. 2016; 7:312.PubMedPubMedCentralCrossRef Belizário JE, Sangiuliano BA, Perez-Sosa M, Neyra JM, Moreira DF. Using pharmacogenomic databases for discovering patient-target genes and small molecule candidates to cancer therapy. Front Pharmacol. 2016; 7:312.PubMedPubMedCentralCrossRef
117.
go back to reference Fortney K, Griesman J, Kotlyar M, Pastrello C, Angeli M, Sound-Tsao M, Jurisica I. Prioritizing therapeutics for lung cancer: An integrative meta-analysis of cancer gene signatures and chemogenomic data. PLoS Comput Biol. 2015; 11(3):e1004068.PubMedPubMedCentralCrossRef Fortney K, Griesman J, Kotlyar M, Pastrello C, Angeli M, Sound-Tsao M, Jurisica I. Prioritizing therapeutics for lung cancer: An integrative meta-analysis of cancer gene signatures and chemogenomic data. PLoS Comput Biol. 2015; 11(3):e1004068.PubMedPubMedCentralCrossRef
119.
go back to reference Jiao M, Liu G, Xue Y, Ding C. Computational drug repositioning for cancer therapeutics. Curr Top Med Chem. 2015; 15(8):767–75.PubMedCrossRef Jiao M, Liu G, Xue Y, Ding C. Computational drug repositioning for cancer therapeutics. Curr Top Med Chem. 2015; 15(8):767–75.PubMedCrossRef
120.
go back to reference Li J, Zheng S, Chen B, Butte A, Swamidass S, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2016; 17(1):2–12.PubMedCrossRef Li J, Zheng S, Chen B, Butte A, Swamidass S, Lu Z. A survey of current trends in computational drug repositioning. Brief Bioinform. 2016; 17(1):2–12.PubMedCrossRef
121.
122.
go back to reference Guedes RA, Serra P, Salvador JA, Guedes RC. Computational approaches for the discovery of human proteasome inhibitors: An overview. Molecules. 2016; 21(7):927.CrossRef Guedes RA, Serra P, Salvador JA, Guedes RC. Computational approaches for the discovery of human proteasome inhibitors: An overview. Molecules. 2016; 21(7):927.CrossRef
123.
go back to reference Yamazaki S, Spilker M, Vicini P. Translational modeling and simulation approaches for molecularly targeted small molecule anticancer agents from bench to bedside. Expert Opin Drug Metab Toxicol. 2016; 12(3):253–6.PubMedCrossRef Yamazaki S, Spilker M, Vicini P. Translational modeling and simulation approaches for molecularly targeted small molecule anticancer agents from bench to bedside. Expert Opin Drug Metab Toxicol. 2016; 12(3):253–6.PubMedCrossRef
124.
go back to reference Li X, Oduola W, Qian L, Dougherty E. Integrating multiscale modeling with drug effects for cancer treatment. Cancer Informat. 2016; 14(Suppl 5):21–31. Li X, Oduola W, Qian L, Dougherty E. Integrating multiscale modeling with drug effects for cancer treatment. Cancer Informat. 2016; 14(Suppl 5):21–31.
125.
go back to reference Buil-Bruna N, López-Picazo J, Martín-Algarra S, Trocóniz I. Bringing model-based prediction to oncology clinical practice: A review of pharmacometrics principles and applications. Oncologist. 2016; 21(2):220–32.PubMedCrossRef Buil-Bruna N, López-Picazo J, Martín-Algarra S, Trocóniz I. Bringing model-based prediction to oncology clinical practice: A review of pharmacometrics principles and applications. Oncologist. 2016; 21(2):220–32.PubMedCrossRef
126.
go back to reference Tang J, Aittokallio T. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des. 2014; 20(1):23–36.PubMedCrossRef Tang J, Aittokallio T. Network pharmacology strategies toward multi-target anticancer therapies: from computational models to experimental design principles. Curr Pharm Des. 2014; 20(1):23–36.PubMedCrossRef
128.
go back to reference Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disc. 2012; 2(5):401–4.https://doi.org/10.1158/2159-8290.cd-12-0095.CrossRef Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. The cbio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Disc. 2012; 2(5):401–4.https://​doi.​org/​10.​1158/​2159-8290.​cd-12-0095.CrossRef
130.
go back to reference Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res. 2017. https://doi.org/10.1093/nar/gkx1132. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, Haw R, Jassal B, Korninger F, May B, Milacic M, Roca CD, Rothfels K, Sevilla C, Shamovsky V, Shorser S, Varusai T, Viteri G, Weiser J, Wu G, Stein L, Hermjakob H, D’Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res. 2017. https://​doi.​org/​10.​1093/​nar/​gkx1132.​
132.
go back to reference Merid SK, Goranskaya D, Alexeyenko A. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinformatics. 2014; 15:308.PubMedPubMedCentralCrossRef Merid SK, Goranskaya D, Alexeyenko A. Distinguishing between driver and passenger mutations in individual cancer genomes by network enrichment analysis. BMC Bioinformatics. 2014; 15:308.PubMedPubMedCentralCrossRef
133.
go back to reference Dimitrakopoulos CM, Beerenwinkel N. Computational approaches for the identification of cancer genes and pathways. Wiley Interdiscip Rev Syst Biol Med. 2016; 9(1):e1364.PubMedCentralCrossRef Dimitrakopoulos CM, Beerenwinkel N. Computational approaches for the identification of cancer genes and pathways. Wiley Interdiscip Rev Syst Biol Med. 2016; 9(1):e1364.PubMedCentralCrossRef
134.
go back to reference Leiserson MDM, Vandin F, Wu H-T, Dobson JR, Eldridge JV, Thomas JL, Papoutsaki A, Kim Y, Niu B, McLellan M, Lawrence MS, Gonzalez-Perez A, Tamborero D, Cheng Y, Ryslik GA, Lopez-Bigas N, Getz G, Ding L, Raphael BJ. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2015; 47(2):106–14.PubMedCrossRef Leiserson MDM, Vandin F, Wu H-T, Dobson JR, Eldridge JV, Thomas JL, Papoutsaki A, Kim Y, Niu B, McLellan M, Lawrence MS, Gonzalez-Perez A, Tamborero D, Cheng Y, Ryslik GA, Lopez-Bigas N, Getz G, Ding L, Raphael BJ. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat Genet. 2015; 47(2):106–14.PubMedCrossRef
135.
go back to reference Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis. Nucleic Acids Res. 2017; 45(D1):D419–D426.PubMedCrossRef Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis. Nucleic Acids Res. 2017; 45(D1):D419–D426.PubMedCrossRef
136.
go back to reference Iorio F, Knijnenburg T, Vis D, Bignell G, Menden M, Schubert M, Aben N, Gonçalves E, Barthorpe S, Lightfoot H, Cokelaer T, Greninger P, van Dyk E, Chang H, de Silva H, Heyn H, Deng X, Egan R, Liu Q, Mironenko T, Mitropoulos X, Richardson L, Wang J, Zhang T, Moran S, Sayols S, Soleimani M, Tamborero D, Lopez-Bigas N, Ross-Macdonald P, Esteller M, Gray N, Haber D, Stratton M, Benes C, Wessels L, Saez-Rodriguez J, McDermott U, MJ G. A landscape of pharmacogenomic interactions in cancer. Cell. 2016; 166:740–54.PubMedPubMedCentralCrossRef Iorio F, Knijnenburg T, Vis D, Bignell G, Menden M, Schubert M, Aben N, Gonçalves E, Barthorpe S, Lightfoot H, Cokelaer T, Greninger P, van Dyk E, Chang H, de Silva H, Heyn H, Deng X, Egan R, Liu Q, Mironenko T, Mitropoulos X, Richardson L, Wang J, Zhang T, Moran S, Sayols S, Soleimani M, Tamborero D, Lopez-Bigas N, Ross-Macdonald P, Esteller M, Gray N, Haber D, Stratton M, Benes C, Wessels L, Saez-Rodriguez J, McDermott U, MJ G. A landscape of pharmacogenomic interactions in cancer. Cell. 2016; 166:740–54.PubMedPubMedCentralCrossRef
137.
go back to reference Schubert M, Klinger B, Klünemann M, Garnett M, Blüthgen N, Saez-Rodriguez J. Perturbation-response genes reveal signaling footprints in cancer gene expression. bioRxiv. 2016;:065672. http://biorxiv.org/content/early/2016/08/28/065672.full.pdf. Schubert M, Klinger B, Klünemann M, Garnett M, Blüthgen N, Saez-Rodriguez J. Perturbation-response genes reveal signaling footprints in cancer gene expression. bioRxiv. 2016;:065672. http://​biorxiv.​org/​content/​early/​2016/​08/​28/​065672.​full.​pdf.​
138.
go back to reference Holzinger I, Jurisica A. Knowledge Discovery and Data Mining in Biomedical Informatics: The Future Is in Integrative, Interactive Machine Learning Solutions Vol. 8401. Heidelberg: Springer; 2014, pp. 1–18.CrossRef Holzinger I, Jurisica A. Knowledge Discovery and Data Mining in Biomedical Informatics: The Future Is in Integrative, Interactive Machine Learning Solutions Vol. 8401. Heidelberg: Springer; 2014, pp. 1–18.CrossRef
139.
go back to reference Aran D, Sirota M, Butte A. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015; 4(6):8971.CrossRef Aran D, Sirota M, Butte A. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015; 4(6):8971.CrossRef
140.
go back to reference Nass SJ, Wizemann T, et al.Informatics Needs and Challenges in Cancer Research: Workshop Summary. Washington (DC): National Academies Press (US); 2012.CrossRef Nass SJ, Wizemann T, et al.Informatics Needs and Challenges in Cancer Research: Workshop Summary. Washington (DC): National Academies Press (US); 2012.CrossRef
142.
143.
144.
Metadata
Title
In silico cancer research towards 3R
Authors
Claire Jean-Quartier
Fleur Jeanquartier
Igor Jurisica
Andreas Holzinger
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4302-0

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine