Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

Comparative analysis of histologically classified oligodendrogliomas reveals characteristic molecular differences between subgroups

Authors: Chris Lauber, Barbara Klink, Michael Seifert

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Molecular data of histologically classified oligodendrogliomas are available offering the possibility to stratify these human brain tumors into clinically relevant molecular subtypes.

Methods

Gene copy number, mutation, and expression data of 193 histologically classified oligodendrogliomas from The Cancer Genome Atlas (TCGA) were analyzed by well-established computational approaches (unsupervised clustering, statistical testing, network inference).

Results

We applied hierarchical clustering to tumor gene copy number profiles and revealed three molecular subgroups within histologically classified oligodendrogliomas. We further screened these subgroups for molecular glioma markers (1p/19q co-deletion, IDH mutation, gain of chromosome 7 and loss of chromosome 10) and found that our subgroups largely resemble known molecular glioma subtypes. We excluded glioblastoma-like tumors (7a10d subgroup) and derived a gene expression signature distinguishing histologically classified oligodendrogliomas with concurrent 1p/19q co-deletion and IDH mutation (1p/19q subgroup) from those with predominant IDH mutation alone (IDHme subgroup). Interestingly, many signature genes were part of signaling pathways involved in the regulation of cell proliferation, differentiation, migration, and cell-cell contacts. We further learned a gene regulatory network associated with the gene expression signature revealing novel putative major regulators with functions in cytoskeleton remodeling (e.g. APBB1IP, VAV1, ARPC1B), apoptosis (CCNL2, CREB3L1), and neural development (e.g. MYTIL, SCRT1, MEF2C) potentially contributing to the manifestation of differences between both subgroups. Moreover, we revealed characteristic expression differences of several HOX and SOX transcription factors suggesting the activity of different glioma stemness programs in both subgroups.

Conclusions

We show that gene copy number profiles alone are sufficient to derive molecular subgroups of histologically classified oligodendrogliomas that are well-embedded into general glioma classification schemes. Moreover, our revealed novel putative major regulators and characteristic stemness signatures indicate that different developmental programs might be active in these subgroups, providing a basis for future studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005; 64(6):479–89.CrossRefPubMed Ohgaki H, Kleihues P. Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol. 2005; 64(6):479–89.CrossRefPubMed
5.
go back to reference Coons S, Johnson P, Scheithauer B, Yates A, Pearl D. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer. 1997; 79:1381–93.CrossRefPubMed Coons S, Johnson P, Scheithauer B, Yates A, Pearl D. Improving diagnostic accuracy and interobserver concordance in the classification and grading of primary gliomas. Cancer. 1997; 79:1381–93.CrossRefPubMed
8.
go back to reference Cairncross J, Ueki K, Zlatescu M, Lisle D, Finkelstein D, Hammond R, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natal Cancer Institute. 1998; 90(19):1473–9.CrossRef Cairncross J, Ueki K, Zlatescu M, Lisle D, Finkelstein D, Hammond R, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natal Cancer Institute. 1998; 90(19):1473–9.CrossRef
22.
go back to reference Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017; 355:8478.CrossRef Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. 2017; 355:8478.CrossRef
25.
go back to reference Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995; 57:289–300. Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995; 57:289–300.
29.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 1994; 58:267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 1994; 58:267–88.
32.
go back to reference Aldape K, Burger PC, Perry A. Clinicopathologic aspects of 1p/19q loss and the diagnosis of oligodendroglioma. Arch Pathol Lab Med. 2007; 131(2):242–51.PubMed Aldape K, Burger PC, Perry A. Clinicopathologic aspects of 1p/19q loss and the diagnosis of oligodendroglioma. Arch Pathol Lab Med. 2007; 131(2):242–51.PubMed
35.
go back to reference Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. Methods Mol Bio. 2016; 1374:23–54.CrossRef Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. UniProtKB/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: How to use the entry view. Methods Mol Bio. 2016; 1374:23–54.CrossRef
42.
43.
go back to reference Yang L, Luo Y, Wei J. Integrative genomic analyses on Ikaros and its expression related to solid cancer prognosis. Oncol. Rep. 2010; 24(2):571–7.PubMed Yang L, Luo Y, Wei J. Integrative genomic analyses on Ikaros and its expression related to solid cancer prognosis. Oncol. Rep. 2010; 24(2):571–7.PubMed
49.
go back to reference Sato T, Saito H, Swensen J, Olifant A, Wood C, Danner D, et al. The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cancer. Cancer Res. 1992; 52(6):1643–6.PubMed Sato T, Saito H, Swensen J, Olifant A, Wood C, Danner D, et al. The human prohibitin gene located on chromosome 17q21 is mutated in sporadic breast cancer. Cancer Res. 1992; 52(6):1643–6.PubMed
59.
go back to reference Klausen C, Leung PC, Auersperg N. Cell motility and spreading are suppressed by HOXA4 in ovarian cancer cells: possible involvement of beta1 integrin. Mol Cancer Res. 2009; 7:1425–37.CrossRefPubMed Klausen C, Leung PC, Auersperg N. Cell motility and spreading are suppressed by HOXA4 in ovarian cancer cells: possible involvement of beta1 integrin. Mol Cancer Res. 2009; 7:1425–37.CrossRefPubMed
60.
go back to reference Teo WW, Merino VF, Cho S, Korangath P, Liang X, Wu R-C, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016; 35:5539–51.CrossRefPubMedPubMedCentral Teo WW, Merino VF, Cho S, Korangath P, Liang X, Wu R-C, et al. HOXA5 determines cell fate transition and impedes tumor initiation and progression in breast cancer through regulation of E-cadherin and CD24. Oncogene. 2016; 35:5539–51.CrossRefPubMedPubMedCentral
61.
go back to reference Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E, Huelsken J. HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal cancer. Cancer Cell. 2015; 28:815–29.CrossRefPubMed Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E, Huelsken J. HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal cancer. Cancer Cell. 2015; 28:815–29.CrossRefPubMed
64.
go back to reference Wang L, Cui Y, Sheng J, Yang Y, Kuang G, Fan Y, et al. Epigenetic inactivation of HOXA11, a novel functional tumor suppressor for renal cell carcinoma, is associated with RCC TNM classification. Oncotarget. 2017; 8:21861–70.PubMedPubMedCentral Wang L, Cui Y, Sheng J, Yang Y, Kuang G, Fan Y, et al. Epigenetic inactivation of HOXA11, a novel functional tumor suppressor for renal cell carcinoma, is associated with RCC TNM classification. Oncotarget. 2017; 8:21861–70.PubMedPubMedCentral
65.
go back to reference Miller GJ, Miller HL, van Bokhoven A, Lambert JR, Werahera PN, Schirripa O, et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate. Cancer Res. 2003; 63:5879–88.PubMed Miller GJ, Miller HL, van Bokhoven A, Lambert JR, Werahera PN, Schirripa O, et al. Aberrant HOXC expression accompanies the malignant phenotype in human prostate. Cancer Res. 2003; 63:5879–88.PubMed
66.
go back to reference Stolt CC, Schlierf A, Lommes P, Hillgärtner S, Werner T, Kosian T, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell. 2006; 11:697–709.CrossRefPubMed Stolt CC, Schlierf A, Lommes P, Hillgärtner S, Werner T, Kosian T, et al. SoxD proteins influence multiple stages of oligodendrocyte development and modulate SoxE protein function. Dev Cell. 2006; 11:697–709.CrossRefPubMed
67.
go back to reference Cheng Y-C, Lee C-J, Badge RM, Orme AT, Scotting PJ. Sox8 gene expression identifies immature glial cells in developing cerebellum and cerebellar tumours. Mol Brain Res. 2001; 92:193–200.CrossRefPubMed Cheng Y-C, Lee C-J, Badge RM, Orme AT, Scotting PJ. Sox8 gene expression identifies immature glial cells in developing cerebellum and cerebellar tumours. Mol Brain Res. 2001; 92:193–200.CrossRefPubMed
68.
go back to reference Stolt CC, Lommes P, Friedrich RP, Wegner M. Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development. 2004; 131:2349–58.CrossRefPubMed Stolt CC, Lommes P, Friedrich RP, Wegner M. Transcription factors Sox8 and Sox10 perform non-equivalent roles during oligodendrocyte development despite functional redundancy. Development. 2004; 131:2349–58.CrossRefPubMed
70.
go back to reference Wang Y, Bagheri-Fam S, Harley VR. SOX13 is up-regulated in the developing mouse neuroepithelium and identifies a sub-population of differentiating neurons. Dev Brain Res. 2005; 157:201–8.CrossRef Wang Y, Bagheri-Fam S, Harley VR. SOX13 is up-regulated in the developing mouse neuroepithelium and identifies a sub-population of differentiating neurons. Dev Brain Res. 2005; 157:201–8.CrossRef
72.
go back to reference The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455:1061–8.CrossRef The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008; 455:1061–8.CrossRef
74.
go back to reference Sakata K, Hareyama M, Komae T, Shirato H, Watanabe O, Watarai J, et al. Supratentorial astrocytomas and oligodendrogliomas treated in the MRI era. Jpn J Clin Oncol. 2001; 31:240–5.CrossRefPubMed Sakata K, Hareyama M, Komae T, Shirato H, Watanabe O, Watarai J, et al. Supratentorial astrocytomas and oligodendrogliomas treated in the MRI era. Jpn J Clin Oncol. 2001; 31:240–5.CrossRefPubMed
76.
go back to reference Modrek AS, Golub D, Khan T, Bready D, Prado J, Bowman C, et al. Low-grade astrocytoma mutations in IDH1, P53, and ATRX cooperate to block differentiation of human neural stem cells via repression of SOX2. Cell Rep. 2017; 21(5):1267–80.CrossRefPubMedPubMedCentral Modrek AS, Golub D, Khan T, Bready D, Prado J, Bowman C, et al. Low-grade astrocytoma mutations in IDH1, P53, and ATRX cooperate to block differentiation of human neural stem cells via repression of SOX2. Cell Rep. 2017; 21(5):1267–80.CrossRefPubMedPubMedCentral
78.
go back to reference van der Vlis TAMB, Hoeben A, Beckervordersandforth JC, Ackermans L, Eekers DBP, Wennekes RMJ, et al. Impact of the revised WHO classification of diffuse low-grade glioma on clinical decision making: A case report. Surg Neurol Int. 2017; 8:223.CrossRefPubMedPubMedCentral van der Vlis TAMB, Hoeben A, Beckervordersandforth JC, Ackermans L, Eekers DBP, Wennekes RMJ, et al. Impact of the revised WHO classification of diffuse low-grade glioma on clinical decision making: A case report. Surg Neurol Int. 2017; 8:223.CrossRefPubMedPubMedCentral
Metadata
Title
Comparative analysis of histologically classified oligodendrogliomas reveals characteristic molecular differences between subgroups
Authors
Chris Lauber
Barbara Klink
Michael Seifert
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4251-7

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine