Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2

Authors: Hamid Maadi, Babak Nami, Junfeng Tong, Gina Li, Zhixiang Wang

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

Targeted therapy with trastuzumab has become a mainstay for HER2-positive breast cancer without a clear understanding of the mechanism of its action. While many mechanisms have been suggested for the action of trastuzumab, most of them are not substantiated by experimental data. It has been suggested that trastuzumab functions by inhibiting intracellular signaling initiated by HER2, however, the data are very controversial. A major issue is the different cellular background of various breast cancer cells lines used in these studies. Each breast cancer cell line has a unique expression profile of various HER receptors, which could significantly affect the effects of trastuzumab.

Methods

To overcome this problem, in this research we adopted a cell model that allow us to specifically examine the effects of trastuzumab on a single HER receptor without the influence of other HER receptors. Three CHO cell lines stably expressing only human EGFR (CHO-EGFR), HER2 (CHO-K6), or HER3 (CHO-HER3) were used. Various methods including cytotoxicity assay, immunoblotting, indirect immunofluorescence, cross linking, and antibody-dependent cellular cytotoxicity (ADCC) were employed in this research.

Results

We showed that trastuzumab did not bind EGFR and HER3, and thus did not affect the homodimerization and phosphorylation of EGFR and HER3. However, overexpression of HER2 in CHO cells, in the absence of other HER receptors, resulted in the homodimerization of HER2 and the phosphorylation of HER2 at all major pY residues. Trastuzumab bound to HER2 specifically and with high affinity. Trastuzumab inhibited neither the homodimerization of HER2, nor the phosphorylation of HER2 at most phosphotyrosine residues. Moreover, trastuzumab did not inhibit the phosphorylation of ERK and AKT in CHO-K6 cells, and did not inhibit the proliferation of CHO-K6 cells. However, trastuzumab induced strong ADCC in CHO-K6 cells.

Conclusion

We concluded that, in the absence of other HER receptors, trastuzumab exerts its antitumor activity through the induction of ADCC, rather than the inhibition of HER2-homodimerization and phosphorylation.
Literature
1.
go back to reference Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. NatRevMolCell Biol. 2001;2(2):127–37. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. NatRevMolCell Biol. 2001;2(2):127–37.
2.
go back to reference Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. NatRevMolCell Biol. 2006;7(7):505–16. Citri A, Yarden Y. EGF-ERBB signalling: towards the systems level. NatRevMolCell Biol. 2006;7(7):505–16.
3.
go back to reference Peles E, Yarden Y. Neu and its ligands: from an oncogene to neural factors. BioEssays : news and reviews in molecular, cellular and developmental biology. 1993;15(12):815–24.CrossRef Peles E, Yarden Y. Neu and its ligands: from an oncogene to neural factors. BioEssays : news and reviews in molecular, cellular and developmental biology. 1993;15(12):815–24.CrossRef
4.
go back to reference Rajkumar T, Gullick WJ. The type I growth factor receptors in human breast cancer. Breast Cancer ResTreat. 1994;29(1):3–9.CrossRef Rajkumar T, Gullick WJ. The type I growth factor receptors in human breast cancer. Breast Cancer ResTreat. 1994;29(1):3–9.CrossRef
5.
go back to reference Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. CurrOpinCell Biol. 2009;21(2):177–84. Hynes NE, MacDonald G. ErbB receptors and signaling pathways in cancer. CurrOpinCell Biol. 2009;21(2):177–84.
6.
go back to reference Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. JClinOncol. 2009;27(34):5838–47.CrossRef Spector NL, Blackwell KL. Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. JClinOncol. 2009;27(34):5838–47.CrossRef
7.
go back to reference Cai Z, Zhang H, Liu J, Berezov A, Murali R, Wang Q, Greene MI. Targeting erbB receptors. Semin Cell Dev Biol. 2010;21(9):961–6.CrossRefPubMed Cai Z, Zhang H, Liu J, Berezov A, Murali R, Wang Q, Greene MI. Targeting erbB receptors. Semin Cell Dev Biol. 2010;21(9):961–6.CrossRefPubMed
8.
go back to reference Fiszman GL, Jasnis MA. Molecular mechanisms of Trastuzumab resistance in HER2 overexpressing breast cancer. IntJBreast Cancer. 2011;2011:352182. Fiszman GL, Jasnis MA. Molecular mechanisms of Trastuzumab resistance in HER2 overexpressing breast cancer. IntJBreast Cancer. 2011;2011:352182.
9.
go back to reference Mahipal A, Kothari N, Gupta S. Epidermal growth factor receptor inhibitors: coming of age. Cancer control : journal of the Moffitt Cancer Center. 2014;21(1):74–9.CrossRef Mahipal A, Kothari N, Gupta S. Epidermal growth factor receptor inhibitors: coming of age. Cancer control : journal of the Moffitt Cancer Center. 2014;21(1):74–9.CrossRef
10.
go back to reference Lluch A, Eroles P, Perez-Fidalgo JA. Emerging EGFR antagonists for breast cancer. Expert opinion on emerging drugs. 2014;19(2):165–81.CrossRefPubMed Lluch A, Eroles P, Perez-Fidalgo JA. Emerging EGFR antagonists for breast cancer. Expert opinion on emerging drugs. 2014;19(2):165–81.CrossRefPubMed
11.
go back to reference Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–28.CrossRefPubMed Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–28.CrossRefPubMed
12.
go back to reference Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York, NY). 1987;235(4785):177–82.CrossRef Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science (New York, NY). 1987;235(4785):177–82.CrossRef
13.
go back to reference Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science (New York, NY). 1989;244(4905):707–12.CrossRef Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science (New York, NY). 1989;244(4905):707–12.CrossRef
14.
go back to reference Gullick WJ. The c-erbB3/HER3 receptor in human cancer. Cancer Surv. 1996;27:339–49.PubMed Gullick WJ. The c-erbB3/HER3 receptor in human cancer. Cancer Surv. 1996;27:339–49.PubMed
15.
go back to reference Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. NatRevCancer. 2005;5(5):341–54. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. NatRevCancer. 2005;5(5):341–54.
16.
go back to reference Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev. 2009;35(4):354–63.CrossRefPubMed Capdevila J, Elez E, Macarulla T, Ramos FJ, Ruiz-Echarri M, Tabernero J. Anti-epidermal growth factor receptor monoclonal antibodies in cancer treatment. Cancer Treat Rev. 2009;35(4):354–63.CrossRefPubMed
17.
go back to reference Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14(4):320–68.CrossRefPubMed Ross JS, Slodkowska EA, Symmans WF, Pusztai L, Ravdin PM, Hortobagyi GN. The HER-2 receptor and breast cancer: ten years of targeted anti-HER-2 therapy and personalized medicine. Oncologist. 2009;14(4):320–68.CrossRefPubMed
18.
go back to reference De Mattos-Arruda L, Cortes J. Use of pertuzumab for the treatment of HER2-positive metastatic breast cancer. Adv Ther. 2013;30(7):645–58.CrossRefPubMed De Mattos-Arruda L, Cortes J. Use of pertuzumab for the treatment of HER2-positive metastatic breast cancer. Adv Ther. 2013;30(7):645–58.CrossRefPubMed
19.
go back to reference Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(1):92–8.CrossRef Dawood S, Broglio K, Buzdar AU, Hortobagyi GN, Giordano SH. Prognosis of women with metastatic breast cancer by HER2 status and trastuzumab treatment: an institutional-based review. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2010;28(1):92–8.CrossRef
20.
go back to reference Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–80.CrossRefPubMed Nahta R, Yu D, Hung MC, Hortobagyi GN, Esteva FJ. Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat Clin Pract Oncol. 2006;3(5):269–80.CrossRefPubMed
21.
go back to reference Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9(1):16–32.CrossRef Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2012;9(1):16–32.CrossRef
22.
go back to reference Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80(2):213–23.CrossRefPubMed Heldin CH. Dimerization of cell surface receptors in signal transduction. Cell. 1995;80(2):213–23.CrossRefPubMed
23.
go back to reference Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. IntJRadiatOncolBiolPhys. 2004;58(3):903–13. Marmor MD, Skaria KB, Yarden Y. Signal transduction and oncogenesis by ErbB/HER receptors. IntJRadiatOncolBiolPhys. 2004;58(3):903–13.
24.
go back to reference Carraway KL 3rd, Cantley LC. A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell. 1994;78(1):5–8.CrossRefPubMed Carraway KL 3rd, Cantley LC. A neu acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signaling. Cell. 1994;78(1):5–8.CrossRefPubMed
25.
go back to reference Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996;15(10):2452–67.PubMedPubMedCentral Pinkas-Kramarski R, Soussan L, Waterman H, Levkowitz G, Alroy I, Klapper L, Lavi S, Seger R, Ratzkin BJ, Sela M, et al. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996;15(10):2452–67.PubMedPubMedCentral
26.
go back to reference Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. MolCell Biol. 1996;16(10):5276–87. Tzahar E, Waterman H, Chen X, Levkowitz G, Karunagaran D, Lavi S, Ratzkin BJ, Yarden Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. MolCell Biol. 1996;16(10):5276–87.
27.
go back to reference Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ. Structure of the extracellular region of HER2 alone and in complex with the Herceptin fab. Nature. 2003;421(6924):756–60.CrossRefPubMed Cho HS, Mason K, Ramyar KX, Stanley AM, Gabelli SB, Denney DW Jr, Leahy DJ. Structure of the extracellular region of HER2 alone and in complex with the Herceptin fab. Nature. 2003;421(6924):756–60.CrossRefPubMed
28.
go back to reference Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. MolCell. 2003;11(2):495–505. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Kofler M, Jorissen RN, Nice EC, Burgess AW, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. MolCell. 2003;11(2):495–505.
29.
go back to reference Burgess AW. EGFR family: structure physiology signalling and therapeutic targets. Growth factors (Chur, Switzerland). 2008;26(5):263–74.CrossRef Burgess AW. EGFR family: structure physiology signalling and therapeutic targets. Growth factors (Chur, Switzerland). 2008;26(5):263–74.CrossRef
30.
go back to reference Earp HS, Dawson TL, Li X, Yu H. Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research. Breast Cancer ResTreat. 1995;35(1):115–32.CrossRef Earp HS, Dawson TL, Li X, Yu H. Heterodimerization and functional interaction between EGF receptor family members: a new signaling paradigm with implications for breast cancer research. Breast Cancer ResTreat. 1995;35(1):115–32.CrossRef
31.
go back to reference Wallasch C1, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 1995;14(17):4267–75. Wallasch C1, Weiss FU, Niederfellner G, Jallal B, Issing W, Ullrich A. Heregulin-dependent regulation of HER2/neu oncogenic signaling by heterodimerization with HER3. EMBO J. 1995;14(17):4267–75.
32.
go back to reference Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, Seger R, Hynes NE, Yarden Y. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996;15(2):254–64.PubMedPubMedCentral Karunagaran D, Tzahar E, Beerli RR, Chen X, Graus-Porta D, Ratzkin BJ, Seger R, Hynes NE, Yarden Y. ErbB-2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 1996;15(2):254–64.PubMedPubMedCentral
33.
go back to reference Gamett DC, Pearson G, Cerione RA, Friedberg I. Secondary dimerization between members of the epidermal growth factor receptor family. JBiolChem. 1997;272(18):12052–6. Gamett DC, Pearson G, Cerione RA, Friedberg I. Secondary dimerization between members of the epidermal growth factor receptor family. JBiolChem. 1997;272(18):12052–6.
34.
go back to reference Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–55.CrossRefPubMedPubMedCentral Graus-Porta D, Beerli RR, Daly JM, Hynes NE. ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J. 1997;16(7):1647–55.CrossRefPubMedPubMedCentral
35.
go back to reference Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 1997;410(1):83–6.CrossRefPubMed Alroy I, Yarden Y. The ErbB signaling network in embryogenesis and oncogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 1997;410(1):83–6.CrossRefPubMed
36.
go back to reference Waterman H, Sabanai I, Geiger B, Yarden Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. JBiolChem. 1998;273(22):13819–27. Waterman H, Sabanai I, Geiger B, Yarden Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. JBiolChem. 1998;273(22):13819–27.
37.
go back to reference Waterman H, Levkowitz G, Alroy I, Yarden Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor [in process citation]. JBiolChem. 1999;274(32):22151–4. Waterman H, Levkowitz G, Alroy I, Yarden Y. The RING finger of c-Cbl mediates desensitization of the epidermal growth factor receptor [in process citation]. JBiolChem. 1999;274(32):22151–4.
38.
go back to reference Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, Waterman H, Sela M, van Zoelen EJ, Yarden Y. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 1998;17(12):3385–97.CrossRefPubMedPubMedCentral Lenferink AE, Pinkas-Kramarski R, van de Poll ML, van Vugt MJ, Klapper LN, Tzahar E, Waterman H, Sela M, van Zoelen EJ, Yarden Y. Differential endocytic routing of homo- and hetero-dimeric ErbB tyrosine kinases confers signaling superiority to receptor heterodimers. EMBO J. 1998;17(12):3385–97.CrossRefPubMedPubMedCentral
39.
go back to reference Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. JBiolChem. 1999;274(13):8865–74. Worthylake R, Opresko LK, Wiley HS. ErbB-2 amplification inhibits down-regulation and induces constitutive activation of both ErbB-2 and epidermal growth factor receptors. JBiolChem. 1999;274(13):8865–74.
40.
go back to reference Ahmed S, Sami A, Xiang J. HER2-directed therapy: current treatment options for HER2-positive breast cancer. Tokyo: Breast cancer; 2015. Ahmed S, Sami A, Xiang J. HER2-directed therapy: current treatment options for HER2-positive breast cancer. Tokyo: Breast cancer; 2015.
41.
go back to reference Fendly BM, Kotts C, Vetterlein D, Lewis GD, Winget M, Carver ME, Watson SR, Sarup J, Saks S, Ullrich A, et al. The extracellular domain of HER2/neu is a potential immunogen for active specific immunotherapy of breast cancer. JBiolResponse Mod. 1990;9(5):449–55. Fendly BM, Kotts C, Vetterlein D, Lewis GD, Winget M, Carver ME, Watson SR, Sarup J, Saks S, Ullrich A, et al. The extracellular domain of HER2/neu is a potential immunogen for active specific immunotherapy of breast cancer. JBiolResponse Mod. 1990;9(5):449–55.
42.
go back to reference Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C, Shepard HM. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer ImmunolImmunother. 1993;37(4):255–63.CrossRef Lewis GD, Figari I, Fendly B, Wong WL, Carter P, Gorman C, Shepard HM. Differential responses of human tumor cell lines to anti-p185HER2 monoclonal antibodies. Cancer ImmunolImmunother. 1993;37(4):255–63.CrossRef
43.
go back to reference Nuti M, Bellati F, Visconti V, Napoletano C, Domenici L, Caccetta J, Zizzari IG, Ruscito I, Rahimi H, Benedetti-Panici P, et al. Immune effects of trastuzumab. J Cancer. 2011;2:317–23.CrossRefPubMedPubMedCentral Nuti M, Bellati F, Visconti V, Napoletano C, Domenici L, Caccetta J, Zizzari IG, Ruscito I, Rahimi H, Benedetti-Panici P, et al. Immune effects of trastuzumab. J Cancer. 2011;2:317–23.CrossRefPubMedPubMedCentral
44.
go back to reference Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.CrossRefPubMed Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.CrossRefPubMed
45.
go back to reference Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer. 2006;94(2):259–67.CrossRefPubMedPubMedCentral Arnould L, Gelly M, Penault-Llorca F, Benoit L, Bonnetain F, Migeon C, Cabaret V, Fermeaux V, Bertheau P, Garnier J, et al. Trastuzumab-based treatment of HER2-positive breast cancer: an antibody-dependent cellular cytotoxicity mechanism? Br J Cancer. 2006;94(2):259–67.CrossRefPubMedPubMedCentral
46.
go back to reference Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G, Silva LS, Villani L, Tagliabue E, Menard S, et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 2007;67(24):11991–9.CrossRefPubMed Varchetta S, Gibelli N, Oliviero B, Nardini E, Gennari R, Gatti G, Silva LS, Villani L, Tagliabue E, Menard S, et al. Elements related to heterogeneity of antibody-dependent cell cytotoxicity in patients under trastuzumab therapy for primary operable breast cancer overexpressing Her2. Cancer Res. 2007;67(24):11991–9.CrossRefPubMed
47.
go back to reference Kute T, Stehle JR Jr, Ornelles D, Walker N, Delbono O, Vaughn JP. Understanding key assay parameters that affect measurements of trastuzumab-mediated ADCC against Her2 positive breast cancer cells. Oncoimmunology. 2012;1(6):810–21.CrossRefPubMedPubMedCentral Kute T, Stehle JR Jr, Ornelles D, Walker N, Delbono O, Vaughn JP. Understanding key assay parameters that affect measurements of trastuzumab-mediated ADCC against Her2 positive breast cancer cells. Oncoimmunology. 2012;1(6):810–21.CrossRefPubMedPubMedCentral
48.
go back to reference Petricevic B, Laengle J, Singer J, Sachet M, Fazekas J, Steger G, Bartsch R, Jensen-Jarolim E, Bergmann M. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients. J Transl Med. 2013;11:307.CrossRefPubMedPubMedCentral Petricevic B, Laengle J, Singer J, Sachet M, Fazekas J, Steger G, Bartsch R, Jensen-Jarolim E, Bergmann M. Trastuzumab mediates antibody-dependent cell-mediated cytotoxicity and phagocytosis to the same extent in both adjuvant and metastatic HER2/neu breast cancer patients. J Transl Med. 2013;11:307.CrossRefPubMedPubMedCentral
49.
go back to reference Duong MN, Cleret A, Matera EL, Chettab K, Mathe D, Valsesia-Wittmann S, Clemenceau B, Dumontet C. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast cancer research : BCR. 2015;17:57.CrossRefPubMedPubMedCentral Duong MN, Cleret A, Matera EL, Chettab K, Mathe D, Valsesia-Wittmann S, Clemenceau B, Dumontet C. Adipose cells promote resistance of breast cancer cells to trastuzumab-mediated antibody-dependent cellular cytotoxicity. Breast cancer research : BCR. 2015;17:57.CrossRefPubMedPubMedCentral
50.
go back to reference Shi Y, Fan X, Deng H, Brezski RJ, Rycyzyn M, Jordan RE, Strohl WR, Zou Q, Zhang N, An Z. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcgamma receptors on macrophages. Journal of immunology (Baltimore, Md : 1950). 2015;194(9):4379–86.CrossRef Shi Y, Fan X, Deng H, Brezski RJ, Rycyzyn M, Jordan RE, Strohl WR, Zou Q, Zhang N, An Z. Trastuzumab triggers phagocytic killing of high HER2 cancer cells in vitro and in vivo by interaction with Fcgamma receptors on macrophages. Journal of immunology (Baltimore, Md : 1950). 2015;194(9):4379–86.CrossRef
51.
go back to reference Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, Smith DJ, Landolfi S. Ramon y Cajal S, Arribas J, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28(6):803–14. Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, Smith DJ, Landolfi S. Ramon y Cajal S, Arribas J, et al. Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene. 2009;28(6):803–14.
52.
go back to reference Dokmanovic M, Wu Y, Shen Y, Chen J, Hirsch DS, Wu WJ. Trastuzumab-induced recruitment of Csk-homologous kinase (CHK) to ErbB2 receptor is associated with ErbB2-Y1248 phosphorylation and ErbB2 degradation to mediate cell growth inhibition. Cancer biology & therapy. 2014;15(8):1029–41.CrossRef Dokmanovic M, Wu Y, Shen Y, Chen J, Hirsch DS, Wu WJ. Trastuzumab-induced recruitment of Csk-homologous kinase (CHK) to ErbB2 receptor is associated with ErbB2-Y1248 phosphorylation and ErbB2 degradation to mediate cell growth inhibition. Cancer biology & therapy. 2014;15(8):1029–41.CrossRef
53.
go back to reference Gijsen M, King P, Perera T, Parker PJ, Harris AL, Larijani B, Kong A. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer. PLoS Biol. 2010;8(12):e1000563.CrossRefPubMedPubMedCentral Gijsen M, King P, Perera T, Parker PJ, Harris AL, Larijani B, Kong A. HER2 phosphorylation is maintained by a PKB negative feedback loop in response to anti-HER2 herceptin in breast cancer. PLoS Biol. 2010;8(12):e1000563.CrossRefPubMedPubMedCentral
54.
go back to reference Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2(2):127–37.CrossRefPubMed Agus DB, Akita RW, Fox WD, Lewis GD, Higgins B, Pisacane PI, Lofgren JA, Tindell C, Evans DP, Maiese K, et al. Targeting ligand-activated ErbB2 signaling inhibits breast and prostate tumor growth. Cancer Cell. 2002;2(2):127–37.CrossRefPubMed
55.
go back to reference Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 2004;64(7):2343–6.CrossRefPubMed Nahta R, Hung MC, Esteva FJ. The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res. 2004;64(7):2343–6.CrossRefPubMed
56.
go back to reference Longva KE, Pedersen NM, Haslekas C, Stang E, Madshus IH. Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2. IntJCancer. 2005;116(3):359–67. Longva KE, Pedersen NM, Haslekas C, Stang E, Madshus IH. Herceptin-induced inhibition of ErbB2 signaling involves reduced phosphorylation of Akt but not endocytic down-regulation of ErbB2. IntJCancer. 2005;116(3):359–67.
57.
go back to reference Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 2002;62(14):4132–41.PubMed Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 2002;62(14):4132–41.PubMed
58.
go back to reference Xia W, Bisi J, Strum J, Liu L, Carrick K, Graham KM, Treece AL, Hardwicke MA, Dush M, Liao Q, et al. Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res. 2006;66(3):1640–7.CrossRefPubMed Xia W, Bisi J, Strum J, Liu L, Carrick K, Graham KM, Treece AL, Hardwicke MA, Dush M, Liao Q, et al. Regulation of survivin by ErbB2 signaling: therapeutic implications for ErbB2-overexpressing breast cancers. Cancer Res. 2006;66(3):1640–7.CrossRefPubMed
59.
go back to reference Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM, Dennis PA, Lipkowitz S. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res. 2001;61(12):4892–900.PubMed Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM, Dennis PA, Lipkowitz S. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res. 2001;61(12):4892–900.PubMed
60.
go back to reference Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, Klumperman J, Scheller RH. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. MolBiolCell. 2004;15(12):5268–82. Austin CD, De Maziere AM, Pisacane PI, van Dijk SM, Eigenbrot C, Sliwkowski MX, Klumperman J, Scheller RH. Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin. MolBiolCell. 2004;15(12):5268–82.
61.
go back to reference Valabrega G, Montemurro F, Sarotto I, Petrelli A, Rubini P, Tacchetti C, Aglietta M, Comoglio PM, Giordano S. TGFalpha expression impairs Trastuzumab-induced HER2 downregulation. Oncogene. 2005;24(18):3002–10.CrossRefPubMed Valabrega G, Montemurro F, Sarotto I, Petrelli A, Rubini P, Tacchetti C, Aglietta M, Comoglio PM, Giordano S. TGFalpha expression impairs Trastuzumab-induced HER2 downregulation. Oncogene. 2005;24(18):3002–10.CrossRefPubMed
62.
go back to reference Pietras RJ, Pegram MD, Finn RS, Maneval DA, Slamon DJ. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene. 1998;17(17):2235–49.CrossRefPubMed Pietras RJ, Pegram MD, Finn RS, Maneval DA, Slamon DJ. Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs. Oncogene. 1998;17(17):2235–49.CrossRefPubMed
63.
go back to reference Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61(12):4744–9.PubMed Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res. 2001;61(12):4744–9.PubMed
64.
go back to reference Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416(6878):279–80.CrossRefPubMed Izumi Y, Xu L, di Tomaso E, Fukumura D, Jain RK. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature. 2002;416(6878):279–80.CrossRefPubMed
65.
go back to reference Wen XF, Yang G, Mao W, Thornton A, Liu J, Bast RC Jr, Le XF. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene. 2006;25(52):6986–96.CrossRefPubMed Wen XF, Yang G, Mao W, Thornton A, Liu J, Bast RC Jr, Le XF. HER2 signaling modulates the equilibrium between pro- and antiangiogenic factors via distinct pathways: implications for HER2-targeted antibody therapy. Oncogene. 2006;25(52):6986–96.CrossRefPubMed
66.
go back to reference Wang Q, Zhu F, Wang Z. Identification of EGF receptor C-terminal sequences 1005-1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. ExpCell Res. 2007;313:3349–63. Wang Q, Zhu F, Wang Z. Identification of EGF receptor C-terminal sequences 1005-1017 and di-leucine motif 1010LL1011 as essential in EGF receptor endocytosis. ExpCell Res. 2007;313:3349–63.
67.
go back to reference Munch RC, Muhlebach MD, Schaser T, Kneissl S, Jost C, Pluckthun A, Cichutek K, Buchholz CJ. DARPins: an efficient targeting domain for lentiviral vectors. Molecular therapy : the journal of the American Society of Gene Therapy. 2011;19(4):686–93.CrossRef Munch RC, Muhlebach MD, Schaser T, Kneissl S, Jost C, Pluckthun A, Cichutek K, Buchholz CJ. DARPins: an efficient targeting domain for lentiviral vectors. Molecular therapy : the journal of the American Society of Gene Therapy. 2011;19(4):686–93.CrossRef
68.
go back to reference Mendrola JM, Berger MB, King MC, Lemmon MA. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem. 2002;277(7):4704–12.CrossRefPubMed Mendrola JM, Berger MB, King MC, Lemmon MA. The single transmembrane domains of ErbB receptors self-associate in cell membranes. J Biol Chem. 2002;277(7):4704–12.CrossRefPubMed
69.
go back to reference Wang RC, Chen X, Parissenti AM, Joy AA, Tuszynski J, Brindley DN, Wang Z. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents. PLoS One. 2017;12(8):e0182400.CrossRefPubMedPubMedCentral Wang RC, Chen X, Parissenti AM, Joy AA, Tuszynski J, Brindley DN, Wang Z. Sensitivity of docetaxel-resistant MCF-7 breast cancer cells to microtubule-destabilizing agents including vinca alkaloids and colchicine-site binding agents. PLoS One. 2017;12(8):e0182400.CrossRefPubMedPubMedCentral
70.
go back to reference Nagy P, Jenei A, Kirsch AK, Szollosi J, Damjanovich S, Jovin TM. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci. 1999;112(Pt 11):1733–41.PubMed Nagy P, Jenei A, Kirsch AK, Szollosi J, Damjanovich S, Jovin TM. Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci. 1999;112(Pt 11):1733–41.PubMed
71.
go back to reference Yuste L, Montero JC, Esparis-Ogando A, Pandiella A. Activation of ErbB2 by overexpression or by transmembrane neuregulin results in differential signaling and sensitivity to herceptin. Cancer Res. 2005;65(15):6801–10.CrossRefPubMed Yuste L, Montero JC, Esparis-Ogando A, Pandiella A. Activation of ErbB2 by overexpression or by transmembrane neuregulin results in differential signaling and sensitivity to herceptin. Cancer Res. 2005;65(15):6801–10.CrossRefPubMed
72.
go back to reference Roskoski R Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacological research : the official journal of the Italian Pharmacological Society. 2014;79:34–74.CrossRef Roskoski R Jr. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacological research : the official journal of the Italian Pharmacological Society. 2014;79:34–74.CrossRef
73.
go back to reference Sajot N, Genest M. Dimer interface of transmembrane domains for neu/erbB-2 receptor dimerization and transforming activation: a model revealed by molecular dynamics simulations. J Biomol Struct Dyn. 2001;19(1):15–31.CrossRefPubMed Sajot N, Genest M. Dimer interface of transmembrane domains for neu/erbB-2 receptor dimerization and transforming activation: a model revealed by molecular dynamics simulations. J Biomol Struct Dyn. 2001;19(1):15–31.CrossRefPubMed
74.
go back to reference Cymer F, Schneider D. Transmembrane helix-helix interactions involved in ErbB receptor signaling. Cell Adhes Migr. 2010;4(2):299–312.CrossRef Cymer F, Schneider D. Transmembrane helix-helix interactions involved in ErbB receptor signaling. Cell Adhes Migr. 2010;4(2):299–312.CrossRef
75.
go back to reference Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS. HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic Juxtamembrane regions. J Mol Biol. 2016;428(1):52–61.CrossRefPubMed Bragin PE, Mineev KS, Bocharova OV, Volynsky PE, Bocharov EV, Arseniev AS. HER2 transmembrane domain dimerization coupled with self-association of membrane-embedded cytoplasmic Juxtamembrane regions. J Mol Biol. 2016;428(1):52–61.CrossRefPubMed
76.
go back to reference Kostyal D, Welt RS, Danko J, Shay T, Lanning C, Horton K, Welt S. Trastuzumab and lapatinib modulation of HER2 tyrosine/threonine phosphorylation and cell signaling. Medical oncology (Northwood, London, England). 2012;29(3):1486–94.CrossRef Kostyal D, Welt RS, Danko J, Shay T, Lanning C, Horton K, Welt S. Trastuzumab and lapatinib modulation of HER2 tyrosine/threonine phosphorylation and cell signaling. Medical oncology (Northwood, London, England). 2012;29(3):1486–94.CrossRef
77.
go back to reference Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21(41):6255–63.CrossRefPubMed Xia W, Mullin RJ, Keith BR, Liu LH, Ma H, Rusnak DW, Owens G, Alligood KJ, Spector NL. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21(41):6255–63.CrossRefPubMed
78.
go back to reference Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, Gonzalez-Angulo AM, Mills GB, Penuel E, Winslow J, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011;71(5):1871–82.CrossRefPubMedPubMedCentral Ghosh R, Narasanna A, Wang SE, Liu S, Chakrabarty A, Balko JM, Gonzalez-Angulo AM, Mills GB, Penuel E, Winslow J, et al. Trastuzumab has preferential activity against breast cancers driven by HER2 homodimers. Cancer Res. 2011;71(5):1871–82.CrossRefPubMedPubMedCentral
79.
go back to reference Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, Hung MC. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008;13(5):385–93.CrossRefPubMedPubMedCentral Weihua Z, Tsan R, Huang WC, Wu Q, Chiu CH, Fidler IJ, Hung MC. Survival of cancer cells is maintained by EGFR independent of its kinase activity. Cancer Cell. 2008;13(5):385–93.CrossRefPubMedPubMedCentral
80.
go back to reference Mielgo A, Seguin L, Huang M, Camargo MF, Anand S, Franovic A, Weis SM, Advani SJ, Murphy EA, Cheresh DA. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med. 2011;17(12):1641–5.CrossRefPubMedPubMedCentral Mielgo A, Seguin L, Huang M, Camargo MF, Anand S, Franovic A, Weis SM, Advani SJ, Murphy EA, Cheresh DA. A MEK-independent role for CRAF in mitosis and tumor progression. Nat Med. 2011;17(12):1641–5.CrossRefPubMedPubMedCentral
81.
go back to reference Cossu-Rocca P, Muroni MR, Sanges F, Sotgiu G, Asunis A, Tanca L, Onnis D, Pira G, Manca A, Dore S, et al. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma. Am J Cancer Res. 2016;6(1):71–83.PubMed Cossu-Rocca P, Muroni MR, Sanges F, Sotgiu G, Asunis A, Tanca L, Onnis D, Pira G, Manca A, Dore S, et al. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma. Am J Cancer Res. 2016;6(1):71–83.PubMed
Metadata
Title
The effects of trastuzumab on HER2-mediated cell signaling in CHO cells expressing human HER2
Authors
Hamid Maadi
Babak Nami
Junfeng Tong
Gina Li
Zhixiang Wang
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4143-x

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine