Skip to main content
Top
Published in: BMC Cancer 1/2018

Open Access 01-12-2018 | Research article

An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation

Authors: Jeffrey J. Heard, Ivy Phung, Mark I. Potes, Fuyuhiko Tamanoi

Published in: BMC Cancer | Issue 1/2018

Login to get access

Abstract

Background

RHEB is a unique member of the RAS superfamily of small GTPases expressed in all tissues and conserved from yeast to humans. Early studies on RHEB indicated a possible RHEB-RAF interaction, but this has not been fully explored. Recent work on cancer genome databases has revealed a reoccurring mutation in RHEB at the Tyr35 position, and a recent study points to the oncogenic potential of this mutant that involves activation of RAF/MEK/ERK signaling. These developments prompted us to reassess the significance of RHEB effect on RAF, and to compare mutant and wild type RHEB.

Methods

To study RHEB-RAF interaction, and the effect of the Y35N mutation on this interaction, we used transfection, immunoprecipitation, and Western blotting techniques. We generated cell lines stably expressing RHEB WT, RHEB Y35N, and KRAS G12V, and monitored cellular transforming properties through cell proliferation, anchorage independent growth, cell cycle analysis, and foci formation assays.

Results

We observe a strong interaction between RHEB and BRAF, but not with CRAF. This interaction is dependent on an intact RHEB effector domain and RHEB-GTP loading status. RHEB overexpression decreases RAF activation of the RAF/MEK/ERK pathway and RHEB knockdown results in an increase in RAF/MEK/ERK activation. RHEB Y35N mutation has decreased interaction with BRAF, and RHEB Y35N cells exhibit greater BRAF/CRAF heterodimerization resulting in increased RAF/MEK/ERK signaling. This leads to cancer transformation of RHEB Y35N stably expressing cell lines, similar to KRAS G12 V expressing cell lines.

Conclusions

RHEB interaction with BRAF is crucial for inhibiting RAF/MEK/ERK signaling. The RHEB Y35N mutant sustains RAF/MEK/ERK signaling due to a decreased interaction with BRAF, leading to increased BRAF/CRAF heterodimerization. RHEB Y35N expressing cells undergo cancer transformation due to decreased interaction between RHEB and BRAF resulting in overactive RAF/MEK/ERK signaling. Taken together with the previously established function of RHEB to activate mTORC1 signaling, it appears that RHEB performs a dual function; one is to suppress the RAF/MEK/ERK signaling and the other is to activate mTORC1 signaling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Aspuria P-J, Tamanoi F. The Rheb family of GTP-binding proteins. Cell Signal. 2004;16(10):1105–12.CrossRefPubMed Aspuria P-J, Tamanoi F. The Rheb family of GTP-binding proteins. Cell Signal. 2004;16(10):1105–12.CrossRefPubMed
2.
go back to reference Yamagata K, Sanders LK, Kaufmannn WE, Yee W, Barnes CA, Nathans D, Paul WF. Rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem. 1994;269(23):16333–9.PubMed Yamagata K, Sanders LK, Kaufmannn WE, Yee W, Barnes CA, Nathans D, Paul WF. Rheb, a growth factor- and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem. 1994;269(23):16333–9.PubMed
3.
go back to reference Gromov PS, Madsen P, Tomerup N, Celis JE. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett. 1995;377(2):221–6.CrossRefPubMed Gromov PS, Madsen P, Tomerup N, Celis JE. A novel approach for expression cloning of small GTPases: identification, tissue distribution and chromosome mapping of the human homolog of rheb. FEBS Lett. 1995;377(2):221–6.CrossRefPubMed
4.
go back to reference Clark JC, Kinch MS, Rogers-Graham K, Sebti SM, Hamilton AD, Der CJ. The Ras-related protein Rheb is Farnesylated and antagonizes Ras signaling and transformation. J Biol Chem. 1997;272(16):10608–15.CrossRefPubMed Clark JC, Kinch MS, Rogers-Graham K, Sebti SM, Hamilton AD, Der CJ. The Ras-related protein Rheb is Farnesylated and antagonizes Ras signaling and transformation. J Biol Chem. 1997;272(16):10608–15.CrossRefPubMed
5.
go back to reference N. Mizuki, M. Kimura, S. Ohno, S. Miyata, M. Sato, H. Ando, M. Ishihara, K. Goto, S. Watanabe, M. Yamazaki, A. Ono, S. Taguchi, K. Okumura, M. Nogami, H. Taguchi, A. Ando, and H. Inoko, “Isolation of cDNA and genomic clones of a human Ras-related GTP-binding protein gene and its chromosomal localization to the long arm of chromosome 7, 7q36,” 1996. N. Mizuki, M. Kimura, S. Ohno, S. Miyata, M. Sato, H. Ando, M. Ishihara, K. Goto, S. Watanabe, M. Yamazaki, A. Ono, S. Taguchi, K. Okumura, M. Nogami, H. Taguchi, A. Ando, and H. Inoko, “Isolation of cDNA and genomic clones of a human Ras-related GTP-binding protein gene and its chromosomal localization to the long arm of chromosome 7, 7q36,” 1996.
6.
go back to reference Patel PH, Thapar N, Guo L, Martinez M, Maris J, Gau C-L, Lengyel JA, Tamanoi F. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci. 2003;116(17):3601–10.CrossRefPubMed Patel PH, Thapar N, Guo L, Martinez M, Maris J, Gau C-L, Lengyel JA, Tamanoi F. Drosophila Rheb GTPase is required for cell cycle progression and cell growth. J Cell Sci. 2003;116(17):3601–10.CrossRefPubMed
8.
go back to reference Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, Ding J. Structural basis for the unique biological function of small GTPase RHEB. J Biol Chem. 2005;280(17):17093–100.CrossRefPubMed Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, Ding J. Structural basis for the unique biological function of small GTPase RHEB. J Biol Chem. 2005;280(17):17093–100.CrossRefPubMed
9.
go back to reference Mazhab-Jafari MT, Marshall CB, Ishiyama N, Ho J, Di Palma V, Stambolic V, Ikura M. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure. 2012;20(9):1528–39.CrossRefPubMed Mazhab-Jafari MT, Marshall CB, Ishiyama N, Ho J, Di Palma V, Stambolic V, Ikura M. An autoinhibited noncanonical mechanism of GTP hydrolysis by Rheb maintains mTORC1 homeostasis. Structure. 2012;20(9):1528–39.CrossRefPubMed
10.
go back to reference Marshall CB, Ho J, Buerger C, Plevin MJ, Li G-Y, Li Z, Ikura M, Stambolic V. Characterization of the intrinsic and TSC2-GAP-regulated GTPase activity of Rheb by real-time NMR. Sci Signal. 2009;2(55):ra3.CrossRefPubMed Marshall CB, Ho J, Buerger C, Plevin MJ, Li G-Y, Li Z, Ikura M, Stambolic V. Characterization of the intrinsic and TSC2-GAP-regulated GTPase activity of Rheb by real-time NMR. Sci Signal. 2009;2(55):ra3.CrossRefPubMed
11.
go back to reference Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.CrossRefPubMedPubMedCentral Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander ES, Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505(7484):495–501.CrossRefPubMedPubMedCentral
12.
go back to reference Wang Y, Hong X, Wang J, Yin Y, Zhang Y, Zhou Y, Piao H, Liang Z, Zhang L, Li G, Xu G, Kwiatkowski DJ, Liu Y. Inhibition of MAPK pathway is essential for suppressing Rheb-Y35N driven tumor growth. Oncogene. 2017;36(6):756–65.CrossRefPubMed Wang Y, Hong X, Wang J, Yin Y, Zhang Y, Zhou Y, Piao H, Liang Z, Zhang L, Li G, Xu G, Kwiatkowski DJ, Liu Y. Inhibition of MAPK pathway is essential for suppressing Rheb-Y35N driven tumor growth. Oncogene. 2017;36(6):756–65.CrossRefPubMed
13.
go back to reference Yee WM, Worley PF. Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol. 1997;17(2):921–33.CrossRefPubMedPubMedCentral Yee WM, Worley PF. Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Mol Cell Biol. 1997;17(2):921–33.CrossRefPubMedPubMedCentral
14.
go back to reference Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S, Worley PF, Boss GR, Pilz RB. Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene. 2002;21(41):6356–65.CrossRefPubMed Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S, Worley PF, Boss GR, Pilz RB. Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene. 2002;21(41):6356–65.CrossRefPubMed
15.
go back to reference Karbowniczek M, Robertson GP, Henske EP. Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem. 2006;281(35):25447–56.CrossRefPubMed Karbowniczek M, Robertson GP, Henske EP. Rheb inhibits C-raf activity and B-raf/C-raf heterodimerization. J Biol Chem. 2006;281(35):25447–56.CrossRefPubMed
16.
go back to reference Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signaling axis. EMBO Mol Med. 2011;3:189–200. Neuman NA, Henske EP. Non-canonical functions of the tuberous sclerosis complex-Rheb signaling axis. EMBO Mol Med. 2011;3:189–200.
17.
go back to reference Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. 2003;5(6):566–71.CrossRefPubMed Saucedo LJ, Gao X, Chiarelli DA, Li L, Pan D, Edgar BA. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol. 2003;5(6):566–71.CrossRefPubMed
18.
go back to reference Sato T, Nakashima A, Guo L, Tamanoi F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem. 2009;284(19):12783–91.CrossRefPubMedPubMedCentral Sato T, Nakashima A, Guo L, Tamanoi F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem. 2009;284(19):12783–91.CrossRefPubMedPubMedCentral
20.
go back to reference Beggs AD, Latchford AR, Vasen HFA, Moslein G, Alonso A, Aretz S. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86. Beggs AD, Latchford AR, Vasen HFA, Moslein G, Alonso A, Aretz S. Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut. 2010;59(7):975–86.
21.
go back to reference Inoki K, Guan K-L. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum Mol Genet. 2009;18(1):94–100.CrossRef Inoki K, Guan K-L. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum Mol Genet. 2009;18(1):94–100.CrossRef
22.
go back to reference Henske EP, McCormack FX, McCormack F, Kinder B, Seyama K, Nishimura M, Kwiatkowski D. Lymphangioleiomyomatosis - a wolf in sheep’s clothing. J Clin Invest. 2012;122(11):3807–16.CrossRefPubMedPubMedCentral Henske EP, McCormack FX, McCormack F, Kinder B, Seyama K, Nishimura M, Kwiatkowski D. Lymphangioleiomyomatosis - a wolf in sheep’s clothing. J Clin Invest. 2012;122(11):3807–16.CrossRefPubMedPubMedCentral
23.
go back to reference Patel M, Côté J-F. Ras GTPases’ interaction with effector domains: breaking the families’ barrier. Commun Integr Biol. 2013;6(4):e24298-1–9.CrossRef Patel M, Côté J-F. Ras GTPases’ interaction with effector domains: breaking the families’ barrier. Commun Integr Biol. 2013;6(4):e24298-1–9.CrossRef
24.
go back to reference Malumbres M, Barbacid M. Timeline: RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65.CrossRefPubMed Malumbres M, Barbacid M. Timeline: RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65.CrossRefPubMed
25.
go back to reference Lacher MD, Pincheira R, Zhu Z, Camoretti-Mercado B, Matli M, Warren RS, Castro AF. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene. 2010;29(50):6543–56.CrossRefPubMed Lacher MD, Pincheira R, Zhu Z, Camoretti-Mercado B, Matli M, Warren RS, Castro AF. Rheb activates AMPK and reduces p27Kip1 levels in Tsc2-null cells via mTORC1-independent mechanisms: implications for cell proliferation and tumorigenesis. Oncogene. 2010;29(50):6543–56.CrossRefPubMed
26.
go back to reference Sun Y, Fang Y, Yoon M-S, Zhang C, Roccio M, Zwartkruis FJ, Armstrong M, Brown HA, Chen J. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci U S A. 2008;105(24):8286–91.CrossRefPubMedPubMedCentral Sun Y, Fang Y, Yoon M-S, Zhang C, Roccio M, Zwartkruis FJ, Armstrong M, Brown HA, Chen J. Phospholipase D1 is an effector of Rheb in the mTOR pathway. Proc Natl Acad Sci U S A. 2008;105(24):8286–91.CrossRefPubMedPubMedCentral
27.
go back to reference Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH, Jeon H, Kim D-H, Suh P-G, Ryu SH. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol. 2009;29(14):3991–4001.CrossRefPubMedPubMedCentral Lee MN, Ha SH, Kim J, Koh A, Lee CS, Kim JH, Jeon H, Kim D-H, Suh P-G, Ryu SH. Glycolytic flux signals to mTOR through glyceraldehyde-3-phosphate dehydrogenase-mediated regulation of Rheb. Mol Cell Biol. 2009;29(14):3991–4001.CrossRefPubMedPubMedCentral
28.
go back to reference Shahani N, Pryor W, Swarnkar S, Kholodilov N, Thinakaran G, Burke RE, Subramaniam S. Rheb GTPase regulates β-secretase levels and amyloid β generation. J Biol Chem. 2014;289(9):5799–808.CrossRefPubMed Shahani N, Pryor W, Swarnkar S, Kholodilov N, Thinakaran G, Burke RE, Subramaniam S. Rheb GTPase regulates β-secretase levels and amyloid β generation. J Biol Chem. 2014;289(9):5799–808.CrossRefPubMed
29.
go back to reference Kim HW, Ha SH, Lee MN, Huston E, Kim D-H, Jang SK, Suh P-G, Houslay MD, Ryu SH. Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol Cell Biol. 2010;30(22):5406–20.CrossRefPubMedPubMedCentral Kim HW, Ha SH, Lee MN, Huston E, Kim D-H, Jang SK, Suh P-G, Houslay MD, Ryu SH. Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol Cell Biol. 2010;30(22):5406–20.CrossRefPubMedPubMedCentral
30.
go back to reference Sato T, Akasu H, Shimono W, Matsu C, Fujiwara Y, Shibagaki Y, Heard JJ, Tamanoi F, Hattori S. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity. J Biol Chem. 2015;290(2):1096–105.CrossRefPubMed Sato T, Akasu H, Shimono W, Matsu C, Fujiwara Y, Shibagaki Y, Heard JJ, Tamanoi F, Hattori S. Rheb protein binds CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase) protein in a GTP- and effector domain-dependent manner and influences its cellular localization and carbamoyl-phosphate synthetase (CPSase) activity. J Biol Chem. 2015;290(2):1096–105.CrossRefPubMed
31.
go back to reference Chantaravisoot N, Wongkongkathep P, Loo JA, Mischel PS, Tamanoi F. Significance of filamin a in mTORC2 function in glioblastoma. Mol Cancer. 2015;14(1):127.CrossRefPubMedPubMedCentral Chantaravisoot N, Wongkongkathep P, Loo JA, Mischel PS, Tamanoi F. Significance of filamin a in mTORC2 function in glioblastoma. Mol Cancer. 2015;14(1):127.CrossRefPubMedPubMedCentral
32.
go back to reference Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP. Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem. 2004;279(29):29930–7.CrossRefPubMed Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP. Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent. J Biol Chem. 2004;279(29):29930–7.CrossRefPubMed
33.
go back to reference Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol. 2005;15(8):702–13.CrossRefPubMed Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol. 2005;15(8):702–13.CrossRefPubMed
34.
go back to reference Tabancay AP, Gau C-L, Machado IMP, Uhlmann EJ, Gutmann DH, Guo L, Tamanoi F. Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J Biol Chem. 2003;278(41):39921–30.CrossRefPubMed Tabancay AP, Gau C-L, Machado IMP, Uhlmann EJ, Gutmann DH, Guo L, Tamanoi F. Identification of dominant negative mutants of Rheb GTPase and their use to implicate the involvement of human Rheb in the activation of p70S6K. J Biol Chem. 2003;278(41):39921–30.CrossRefPubMed
35.
go back to reference Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 2001;61:3595–8.PubMed Weber CK, Slupsky JR, Kalmes HA, Rapp UR. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res. 2001;61:3595–8.PubMed
36.
go back to reference Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Project CG, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R. Mechanism of activation of the RAF-ERK signaling pathway by Oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.CrossRefPubMed Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Project CG, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R. Mechanism of activation of the RAF-ERK signaling pathway by Oncogenic mutations of B-RAF. Cell. 2004;116(6):855–67.CrossRefPubMed
37.
go back to reference L. K. Rushworth, A. D. Hindley, E. O’Neill, and W. Kolch, “Regulation and role of Raf-1/B-Raf heterodimerization.,” Mol Cell Biol, vol. 26, no. 6, pp. 2262–2272, 2006. L. K. Rushworth, A. D. Hindley, E. O’Neill, and W. Kolch, “Regulation and role of Raf-1/B-Raf heterodimerization.,” Mol Cell Biol, vol. 26, no. 6, pp. 2262–2272, 2006.
38.
go back to reference Weinberg RA. Use of Transfection to analyze genetic information and malignant transformation. Biochim Biophys Acta. 1981;651:25–35.PubMed Weinberg RA. Use of Transfection to analyze genetic information and malignant transformation. Biochim Biophys Acta. 1981;651:25–35.PubMed
39.
go back to reference Clark GJ, Cox AD, Graham SM, Der CJ. Biological assays for Ras transformation. Methods Enzymol. 1995;255:395–412.CrossRefPubMed Clark GJ, Cox AD, Graham SM, Der CJ. Biological assays for Ras transformation. Methods Enzymol. 1995;255:395–412.CrossRefPubMed
40.
go back to reference Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR. B- and C-RAF display essential differences in their binding to Ras. J Biol Chem. 2007;282(36):26503–16.CrossRefPubMed Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR. B- and C-RAF display essential differences in their binding to Ras. J Biol Chem. 2007;282(36):26503–16.CrossRefPubMed
Metadata
Title
An oncogenic mutant of RHEB, RHEB Y35N, exhibits an altered interaction with BRAF resulting in cancer transformation
Authors
Jeffrey J. Heard
Ivy Phung
Mark I. Potes
Fuyuhiko Tamanoi
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2018
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3938-5

Other articles of this Issue 1/2018

BMC Cancer 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine