Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Analysis of SDHAF3 in familial and sporadic pheochromocytoma and paraganglioma

Authors: Trisha Dwight, Un Na, Edward Kim, Ying Zhu, Anne Louise Richardson, Bruce G. Robinson, Katherine M. Tucker, Anthony J. Gill, Diana E. Benn, Roderick J. Clifton-Bligh, Dennis R. Winge

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Germline mutations in genes encoding subunits of succinate dehydrogenase (SDH) are associated with the development of pheochromocytoma (PC) and/or paraganglioma (PGL). As assembly factors have been identified as playing a role in maturation of individual SDH subunits and assembly of the functioning SDH complex, we hypothesized that SDHAF3 variants may be associated with PC/PGL and functionality of SDH.

Methods

DNA was extracted from the blood of 37 individuals (from 23 families) with germline SDH mutations and 18 PC/PGL (15 sporadic, 3 familial) and screened for mutations using a custom gene panel, containing SDHAF3 (SDH assembly factor 3) as well as eight known PC/PGL susceptibility genes. Molecular and functional consequences of an identified sequence variant of SDHAF3 were assessed in yeast and mammalian cells (HEK293).

Results

Using massively parallel sequencing, we identified a variant in SDHAF3, c.157 T > C (p.Phe53Leu), associated with increased prevalence in familial and sporadic PC/PGL (6.6%) when compared to normal populations (1.2% [1000 Genomes], p = 0.003; 2.1% [Exome Aggregation Consortium], p = 0.0063). In silico prediction tools suggest this variant is probably damaging to protein function, hence we assessed molecular and functional consequences of the resulting amino acid change (p.Phe53Leu) in yeast and human cells. We showed that introduction of SDHAF3 p.Phe53Leu into Sdh7 (ortholog of SDHAF3 in humans) null yeast resulted in impaired function, as observed by its failure to restore SDH activity when expressed in Sdh7 null yeast relative to WT SDHAF3. As SDHAF3 is involved in maturation of SDHB, we tested the functional impact of SDHAF3 c.157 T > C and various clinically relevant SDHB mutations on this interaction. Our in vitro studies in human cells show that SDHAF3 interacts with SDHB (residues 46 and 242), with impaired interaction observed in the presence of the SDHAF3 c.157 T > C variant.

Conclusions

Our studies reveal novel insights into the biogenesis of SDH, uncovering a vital interaction between SDHAF3 and SDHB. We have shown that SDHAF3 interacts directly with SDHB (residue 242 being key to this interaction), and that a variant in SDHAF3 (c.157 T > C [p.Phe53Leu]) may be more prevalent in individuals with PC/PGL, and is hypomorphic via impaired interaction with SDHB.
Appendix
Available only for authorised users
Literature
1.
go back to reference Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19.CrossRefPubMed Dahia PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer. 2014;14(2):108–19.CrossRefPubMed
2.
go back to reference Burnichon N, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20(20):3974–85.CrossRefPubMed Burnichon N, et al. Integrative genomic analysis reveals somatic mutations in pheochromocytoma and paraganglioma. Hum Mol Genet. 2011;20(20):3974–85.CrossRefPubMed
3.
go back to reference Dahia PL, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1(1):72–80.CrossRefPubMed Dahia PL, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1(1):72–80.CrossRefPubMed
4.
go back to reference Lopez-Jimenez E, et al. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol. 2010;24(12):2382–91.CrossRefPubMedPubMedCentral Lopez-Jimenez E, et al. Research resource: transcriptional profiling reveals different pseudohypoxic signatures in SDHB and VHL-related pheochromocytomas. Mol Endocrinol. 2010;24(12):2382–91.CrossRefPubMedPubMedCentral
5.
go back to reference Killian JK, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013;3(6):648–57.CrossRefPubMedPubMedCentral Killian JK, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013;3(6):648–57.CrossRefPubMedPubMedCentral
6.
go back to reference Letouze E, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23(6):739–52.CrossRefPubMed Letouze E, et al. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell. 2013;23(6):739–52.CrossRefPubMed
7.
go back to reference Xiao M, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326–38.CrossRefPubMedPubMedCentral Xiao M, et al. Inhibition of alpha-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326–38.CrossRefPubMedPubMedCentral
8.
go back to reference de Cubas AA, et al. DNA methylation profiling in Pheochromocytoma and Paraganglioma reveals diagnostic and prognostic markers. Clin Cancer Res. 2015;21(13):3020–30.CrossRefPubMed de Cubas AA, et al. DNA methylation profiling in Pheochromocytoma and Paraganglioma reveals diagnostic and prognostic markers. Clin Cancer Res. 2015;21(13):3020–30.CrossRefPubMed
9.
go back to reference Hao HX, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325(5944):1139–42.CrossRefPubMed Hao HX, et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science. 2009;325(5944):1139–42.CrossRefPubMed
10.
go back to reference Na U, et al. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell Metab. 2014;20(2):253–66.CrossRefPubMedPubMedCentral Na U, et al. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell Metab. 2014;20(2):253–66.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Ghezzi D, et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet. 2009;41(6):654–6.CrossRefPubMed Ghezzi D, et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet. 2009;41(6):654–6.CrossRefPubMed
13.
go back to reference Ohlenbusch A, et al. Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency. Orphanet J Rare Dis. 2012;7:69.CrossRefPubMedPubMedCentral Ohlenbusch A, et al. Leukoencephalopathy with accumulated succinate is indicative of SDHAF1 related complex II deficiency. Orphanet J Rare Dis. 2012;7:69.CrossRefPubMedPubMedCentral
14.
go back to reference Bayley JP, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11(4):366–72.CrossRefPubMed Bayley JP, et al. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol. 2010;11(4):366–72.CrossRefPubMed
15.
go back to reference Kunst HP, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res. 2011;17(2):247–54.CrossRefPubMed Kunst HP, et al. SDHAF2 (PGL2-SDH5) and hereditary head and neck paraganglioma. Clin Cancer Res. 2011;17(2):247–54.CrossRefPubMed
16.
go back to reference Maio N, et al. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab. 2014;19(3):445–57.CrossRefPubMed Maio N, et al. Cochaperone binding to LYR motifs confers specificity of iron sulfur cluster delivery. Cell Metab. 2014;19(3):445–57.CrossRefPubMed
18.
go back to reference Gill AJ, et al. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol. 2010;41(6):805–14.CrossRefPubMed Gill AJ, et al. Immunohistochemistry for SDHB triages genetic testing of SDHB, SDHC, and SDHD in paraganglioma-pheochromocytoma syndromes. Hum Pathol. 2010;41(6):805–14.CrossRefPubMed
19.
go back to reference McKenna A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRefPubMedPubMedCentral McKenna A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303.CrossRefPubMedPubMedCentral
20.
go back to reference Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.CrossRefPubMedPubMedCentral Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164.CrossRefPubMedPubMedCentral
21.
go back to reference Cui TZ, et al. Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes. J Biol Chem. 2014;289(9):6133–41.CrossRefPubMedPubMedCentral Cui TZ, et al. Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes. J Biol Chem. 2014;289(9):6133–41.CrossRefPubMedPubMedCentral
22.
go back to reference Glick BS, Pon LA. Isolation of highly purified mitochondria from Saccharomyces Cerevisiae. Methods Enzymol. 1995;260:213–23.CrossRefPubMed Glick BS, Pon LA. Isolation of highly purified mitochondria from Saccharomyces Cerevisiae. Methods Enzymol. 1995;260:213–23.CrossRefPubMed
24.
go back to reference Kim HJ, et al. Flavinylation and assembly of succinate dehydrogenase are dependent on the C-terminal tail of the flavoprotein subunit. J Biol Chem. 2012;287(48):40670–9.CrossRefPubMedPubMedCentral Kim HJ, et al. Flavinylation and assembly of succinate dehydrogenase are dependent on the C-terminal tail of the flavoprotein subunit. J Biol Chem. 2012;287(48):40670–9.CrossRefPubMedPubMedCentral
25.
go back to reference Kim E, et al. Structural and functional consequences of succinate dehydrogenase subunit B mutations. Endocrine Related Cancer. 2015;22(3):387–97.CrossRefPubMed Kim E, et al. Structural and functional consequences of succinate dehydrogenase subunit B mutations. Endocrine Related Cancer. 2015;22(3):387–97.CrossRefPubMed
26.
go back to reference Oyedotun KS, Yau PF, Lemire BD. Identification of the heme axial ligands in the cytochrome b562 of the Saccharomyces Cerevisiae succinate dehydrogenase. J Biol Chem. 2004;279(10):9432–9.CrossRefPubMed Oyedotun KS, Yau PF, Lemire BD. Identification of the heme axial ligands in the cytochrome b562 of the Saccharomyces Cerevisiae succinate dehydrogenase. J Biol Chem. 2004;279(10):9432–9.CrossRefPubMed
27.
go back to reference Van Vranken JG, et al. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit Rev Biochem Mol Biol. 2014:1–13. Van Vranken JG, et al. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit Rev Biochem Mol Biol. 2014:1–13.
Metadata
Title
Analysis of SDHAF3 in familial and sporadic pheochromocytoma and paraganglioma
Authors
Trisha Dwight
Un Na
Edward Kim
Ying Zhu
Anne Louise Richardson
Bruce G. Robinson
Katherine M. Tucker
Anthony J. Gill
Diana E. Benn
Roderick J. Clifton-Bligh
Dennis R. Winge
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3486-z

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine