Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Reduced RCE1 expression predicts poor prognosis of colorectal carcinoma

Authors: Boyun Shi, Xinke Zhou, Lu He, Min Liang, Yuanwei Luo, Peng Jiang

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

As an end-proteolytic enzyme that cleaves the last three residues of proteins with a terminal CAAX, Ras-converting enzyme 1 (RCE1) has an essential role in multiple signaling pathways and take part in the process of differentiation, proliferation and carcinogenesis. The aim of the study is to investigate expression pattern of RCE1 and its prognosis in colorectal carcinoma (CRC).

Methods

The expression of RCE1 and phospho-MAPK family members was confirmed by immunohistochemical staining of CRC tissues. miR-RCE1 lentiviral vectors were transduced into HCT116 and SW489 cells. Reverse transcription PCR (RT-PCR) and western blot were conducted to measure the transfection efficiency. Transwell assays were used to detect the invasiveness of CRC cells.

Results

In the present study, we assessed RCE1 expression in 244 CRC specimens and matching adjacent, non-tumorous tissues by immunohistochemistry (IHC). Compared with the matched adjacent non-tumor tissue samples, the RCE1 reduced in the tumor tissue samples (p < 0.001). RCE1 expression was significantly decreased in 106 of 244 (43.4%) CRC cases. In univariate and multivariate analyses, Decreasing expression of RCE1 independently predicts poor prognosis for patients in both overall survival and disease-free survival. Further study indicated that RCE1 influenced tumor invasion through the p38 pathway. Knockdown of RCE1 reduced phosphorylation and significantly increased the invasive capacity of CRC cells.

Conclusion

Taken together, the outcomes of this study indicate that RCE1 acts as a tumor suppressor in CRC, as its reduced expression may increase CRC cell invasion and independently predict an unsatisfactory prognosis in CRC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
2.
go back to reference Ross JS, Torres-Mora J, Wagle N, Jennings TA, Jones DM. Biomarker-based prediction of response to therapy for colorectal cancer: current perspective. Am J Clin Pathol. 2010;134:478–90.CrossRefPubMed Ross JS, Torres-Mora J, Wagle N, Jennings TA, Jones DM. Biomarker-based prediction of response to therapy for colorectal cancer: current perspective. Am J Clin Pathol. 2010;134:478–90.CrossRefPubMed
3.
go back to reference Sanz-Garcia E, Sauri T, Tabernero J, Macarulla T. Pharmacokinetic and pharmacodynamic evaluation of aflibercept for the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol. 2015;11:995–1004.CrossRefPubMed Sanz-Garcia E, Sauri T, Tabernero J, Macarulla T. Pharmacokinetic and pharmacodynamic evaluation of aflibercept for the treatment of colorectal cancer. Expert Opin Drug Metab Toxicol. 2015;11:995–1004.CrossRefPubMed
5.
go back to reference Tamas K, Walenkamp AM, de Vries EG, van Vugt MA, Beets-Tan RG, van Etten B, de Groot DJ, Hospers GA. Rectal and colon cancer: Not just a different anatomic site. Cancer treatment reviews. 2015;41(8):671–79. Tamas K, Walenkamp AM, de Vries EG, van Vugt MA, Beets-Tan RG, van Etten B, de Groot DJ, Hospers GA. Rectal and colon cancer: Not just a different anatomic site. Cancer treatment reviews. 2015;41(8):671–79.
6.
go back to reference Manolaridis I, Kulkarni K, Dodd RB, Ogasawara S, Zhang Z, Bineva G, et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature. 2013;504:301–5.CrossRefPubMed Manolaridis I, Kulkarni K, Dodd RB, Ogasawara S, Zhang Z, Bineva G, et al. Mechanism of farnesylated CAAX protein processing by the intramembrane protease Rce1. Nature. 2013;504:301–5.CrossRefPubMed
7.
go back to reference Prior IA, Hancock JF. Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol. 2012;23:145–53.CrossRefPubMed Prior IA, Hancock JF. Ras trafficking, localization and compartmentalized signalling. Semin Cell Dev Biol. 2012;23:145–53.CrossRefPubMed
8.
go back to reference Bergo MO, Ambroziak P, Gregory C, George A, Otto JC, Kim E, et al. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol Cell Biol. 2002;22:171–81.CrossRefPubMedPubMedCentral Bergo MO, Ambroziak P, Gregory C, George A, Otto JC, Kim E, et al. Absence of the CAAX endoprotease Rce1: effects on cell growth and transformation. Mol Cell Biol. 2002;22:171–81.CrossRefPubMedPubMedCentral
9.
go back to reference Burrows JF, Kelvin AA, McFarlane C, Burden RE, McGrattan MJ, De la Vega M, et al. USP17 regulates Ras activation and cell proliferation by blocking RCE1 activity. J Biol Chem. 2009;284:9587–95.CrossRefPubMedPubMedCentral Burrows JF, Kelvin AA, McFarlane C, Burden RE, McGrattan MJ, De la Vega M, et al. USP17 regulates Ras activation and cell proliferation by blocking RCE1 activity. J Biol Chem. 2009;284:9587–95.CrossRefPubMedPubMedCentral
10.
go back to reference Jaworski J, Govender U, McFarlane C, de la Vega M, Greene MK, Rawlings ND, et al. A novel RCE1 isoform is required for H-Ras plasma membrane localization and is regulated by USP17. Biochem J. 2014;457:289–300.CrossRefPubMed Jaworski J, Govender U, McFarlane C, de la Vega M, Greene MK, Rawlings ND, et al. A novel RCE1 isoform is required for H-Ras plasma membrane localization and is regulated by USP17. Biochem J. 2014;457:289–300.CrossRefPubMed
11.
go back to reference Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J med. 2013;369:1023–34.CrossRefPubMed Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J med. 2013;369:1023–34.CrossRefPubMed
12.
go back to reference He L, Zhou X, Qu C, Hu L, Tang Y, Zhang Q, et al. Musashi2 predicts poor prognosis and invasion in hepatocellular carcinoma by driving epithelial-mesenchymal transition. J Cell Mol med. 2014;18:49–58.CrossRefPubMed He L, Zhou X, Qu C, Hu L, Tang Y, Zhang Q, et al. Musashi2 predicts poor prognosis and invasion in hepatocellular carcinoma by driving epithelial-mesenchymal transition. J Cell Mol med. 2014;18:49–58.CrossRefPubMed
13.
go back to reference Jiang P, Tang Y, He L, Tang H, Liang M, Mai C, et al. Aberrant expression of nuclear KPNA2 is correlated with early recurrence and poor prognosis in patients with small hepatocellular carcinoma after hepatectomy. Med Oncol. 2014;31:131.CrossRefPubMed Jiang P, Tang Y, He L, Tang H, Liang M, Mai C, et al. Aberrant expression of nuclear KPNA2 is correlated with early recurrence and poor prognosis in patients with small hepatocellular carcinoma after hepatectomy. Med Oncol. 2014;31:131.CrossRefPubMed
14.
go back to reference Hong J, Hu K, Yuan Y, Sang Y, Bu Q, Chen G, et al. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J Clin Invest. 2012;122:2165–75.CrossRefPubMedPubMedCentral Hong J, Hu K, Yuan Y, Sang Y, Bu Q, Chen G, et al. CHK1 targets spleen tyrosine kinase (L) for proteolysis in hepatocellular carcinoma. J Clin Invest. 2012;122:2165–75.CrossRefPubMedPubMedCentral
16.
17.
go back to reference Roberts MJ, Troutman JM, Chehade KA, Cha HC, Kao JP, Huang X, et al. Hydrophilic anilinogeranyl diphosphate prenyl analogues are Ras function inhibitors. Biochemistry. 2006;45:15862–72.CrossRefPubMed Roberts MJ, Troutman JM, Chehade KA, Cha HC, Kao JP, Huang X, et al. Hydrophilic anilinogeranyl diphosphate prenyl analogues are Ras function inhibitors. Biochemistry. 2006;45:15862–72.CrossRefPubMed
18.
go back to reference Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526:583–6.CrossRefPubMed Zhang C, Spevak W, Zhang Y, Burton EA, Ma Y, Habets G, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015;526:583–6.CrossRefPubMed
19.
go back to reference Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6:322–7.CrossRefPubMed Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol. 2005;6:322–7.CrossRefPubMed
20.
go back to reference Derbal Y. State machine modeling of MAPK signaling pathways. Conf Proc IEEE Eng med Biol Soc. 2014;2014:5236–9.PubMed Derbal Y. State machine modeling of MAPK signaling pathways. Conf Proc IEEE Eng med Biol Soc. 2014;2014:5236–9.PubMed
21.
go back to reference Urosevic J, Garcia-Albeniz X, Planet E, Real S, Cespedes MV, Guiu M, et al. Colon Cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat Cell Biol. 2014;16:685–94.CrossRefPubMed Urosevic J, Garcia-Albeniz X, Planet E, Real S, Cespedes MV, Guiu M, et al. Colon Cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nat Cell Biol. 2014;16:685–94.CrossRefPubMed
22.
go back to reference Lu WJ, Chua MS, So SK. Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53- and p38-mediated apoptotic signaling. Oncotarget. 2015;6(39):41722–35. Lu WJ, Chua MS, So SK. Suppression of ATAD2 inhibits hepatocellular carcinoma progression through activation of p53- and p38-mediated apoptotic signaling. Oncotarget. 2015;6(39):41722–35.
23.
go back to reference Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell. 2007;128:295–308.CrossRefPubMed Sun P, Yoshizuka N, New L, Moser BA, Li Y, Liao R, et al. PRAK is essential for ras-induced senescence and tumor suppression. Cell. 2007;128:295–308.CrossRefPubMed
Metadata
Title
Reduced RCE1 expression predicts poor prognosis of colorectal carcinoma
Authors
Boyun Shi
Xinke Zhou
Lu He
Min Liang
Yuanwei Luo
Peng Jiang
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3393-3

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine