Skip to main content
Top
Published in: BMC Cancer 1/2017

Open Access 01-12-2017 | Research article

Is cancer a pure growth curve or does it follow a kinetics of dynamical structural transformation?

Authors: Maraelys Morales González, Javier Antonio González Joa, Luis Enrique Bergues Cabrales, Ana Elisa Bergues Pupo, Baruch Schneider, Suleyman Kondakci, Héctor Manuel Camué Ciria, Juan Bory Reyes, Manuel Verdecia Jarque, Miguel Angel O’Farril Mateus, Tamara Rubio González, Soraida Candida Acosta Brooks, José Luis Hernández Cáceres, Gustavo Victoriano Sierra González

Published in: BMC Cancer | Issue 1/2017

Login to get access

Abstract

Background

Unperturbed tumor growth kinetics is one of the more studied cancer topics; however, it is poorly understood. Mathematical modeling is a useful tool to elucidate new mechanisms involved in tumor growth kinetics, which can be relevant to understand cancer genesis and select the most suitable treatment.

Methods

The classical Kolmogorov-Johnson-Mehl-Avrami as well as the modified Kolmogorov-Johnson-Mehl-Avrami models to describe unperturbed fibrosarcoma Sa-37 tumor growth are used and compared with the Gompertz modified and Logistic models. Viable tumor cells (1×105) are inoculated to 28 BALB/c male mice.

Results

Modified Gompertz, Logistic, Kolmogorov-Johnson-Mehl-Avrami classical and modified Kolmogorov-Johnson-Mehl-Avrami models fit well to the experimental data and agree with one another. A jump in the time behaviors of the instantaneous slopes of classical and modified Kolmogorov-Johnson-Mehl-Avrami models and high values of these instantaneous slopes at very early stages of tumor growth kinetics are observed.

Conclusions

The modified Kolmogorov-Johnson-Mehl-Avrami equation can be used to describe unperturbed fibrosarcoma Sa-37 tumor growth. It reveals that diffusion-controlled nucleation/growth and impingement mechanisms are involved in tumor growth kinetics. On the other hand, tumor development kinetics reveals dynamical structural transformations rather than a pure growth curve. Tumor fractal property prevails during entire TGK.
Literature
1.
go back to reference García AF, Mirabal CC, Guevara MAL, Fernández JL, Pérez E. Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance. Hemoglobin. 2009;33:206–13.CrossRef García AF, Mirabal CC, Guevara MAL, Fernández JL, Pérez E. Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance. Hemoglobin. 2009;33:206–13.CrossRef
2.
go back to reference Cabrales LEB, Nava JJG, Aguilera AR, Joa JAG, Ciria HMC, González MM, et al. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: Predictions and new hypotheses. BMC Cancer. 2010;10:589.CrossRefPubMedPubMedCentral Cabrales LEB, Nava JJG, Aguilera AR, Joa JAG, Ciria HMC, González MM, et al. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: Predictions and new hypotheses. BMC Cancer. 2010;10:589.CrossRefPubMedPubMedCentral
3.
go back to reference Mckellar R, Lu X. Primary Models. In: Modeling microbial responses in foods. New York: CRC Press, Boca Raton; 2004. p. 21–62. Mckellar R, Lu X. Primary Models. In: Modeling microbial responses in foods. New York: CRC Press, Boca Raton; 2004. p. 21–62.
4.
go back to reference Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.CrossRef Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.CrossRef
5.
go back to reference Avrami M. Kinetics of phase change. II Transformation‐time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRef Avrami M. Kinetics of phase change. II Transformation‐time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.CrossRef
6.
go back to reference Workman P, Balmain A, Hickman JA, McNally NJ, Mitchison NA, Pierrepoint CG, et al. UKCCCR guidelines for the welfare of animals in experimental neoplasia. Special Report. Br J Cancer. 1998;58:109–13. Workman P, Balmain A, Hickman JA, McNally NJ, Mitchison NA, Pierrepoint CG, et al. UKCCCR guidelines for the welfare of animals in experimental neoplasia. Special Report. Br J Cancer. 1998;58:109–13.
7.
go back to reference Eckenwiler D, Feinholz C, Ells T, Schonfeld T. The declaration of Helsinki through a feminist lens. Int J Feminist Appr Bioethics. 2008;1:161–77.CrossRef Eckenwiler D, Feinholz C, Ells T, Schonfeld T. The declaration of Helsinki through a feminist lens. Int J Feminist Appr Bioethics. 2008;1:161–77.CrossRef
8.
go back to reference Vaidya VG, Alexandro FJ. Evaluation of some mathematical models for tumor growth. J Biomed Comput. 1982;13:19–35.CrossRef Vaidya VG, Alexandro FJ. Evaluation of some mathematical models for tumor growth. J Biomed Comput. 1982;13:19–35.CrossRef
9.
go back to reference Marušic M, Bajzer Ž, Vuk-Pavlovic S. Tumor growth in vivo and as multicellular spheroids compared by mathematical models. Bull Math Biol. 1994;56:617–31.PubMed Marušic M, Bajzer Ž, Vuk-Pavlovic S. Tumor growth in vivo and as multicellular spheroids compared by mathematical models. Bull Math Biol. 1994;56:617–31.PubMed
10.
go back to reference Marušic M. Mathematical models of tumor growth. Math Commun. 1996;1:175–92. Marušic M. Mathematical models of tumor growth. Math Commun. 1996;1:175–92.
11.
go back to reference Miklavčič D, Jarm T, Karba R, Serša G. Mathematical modelling of tumor growth in mice following electrotherapy and bleomycin treatment. Math Simul Comp. 1995;39:597–602.CrossRef Miklavčič D, Jarm T, Karba R, Serša G. Mathematical modelling of tumor growth in mice following electrotherapy and bleomycin treatment. Math Simul Comp. 1995;39:597–602.CrossRef
12.
go back to reference Bao-Quan A, Xian-Ju W, Guo-Tao L, Liang-Gang L. Correlated noise in a logistic growth model. Phys Rev E. 2003;67:022903. Bao-Quan A, Xian-Ju W, Guo-Tao L, Liang-Gang L. Correlated noise in a logistic growth model. Phys Rev E. 2003;67:022903.
13.
go back to reference Jiménez RP, Hernández EO. Tumor-host dynamics under radiotherapy. Chaos, Solitons Fractals. 2011;44:685–92.CrossRef Jiménez RP, Hernández EO. Tumor-host dynamics under radiotherapy. Chaos, Solitons Fractals. 2011;44:685–92.CrossRef
14.
go back to reference Cabrales LEB, Aguilera AR, Jiménez RP, Jarque MV, Mateus MAO, Ciria HMC, et al. Mathematical modeling of tumor growth in mice following low-level direct electric current. Math Simul Comp. 2008;78:112–20.CrossRef Cabrales LEB, Aguilera AR, Jiménez RP, Jarque MV, Mateus MAO, Ciria HMC, et al. Mathematical modeling of tumor growth in mice following low-level direct electric current. Math Simul Comp. 2008;78:112–20.CrossRef
15.
go back to reference Ferrante L, Bompadre S, Possati L, Leone L. Parameter estimation in a Gompertzian stochastic model for tumor growth. Biometrics. 2000;56:1076–81.CrossRefPubMed Ferrante L, Bompadre S, Possati L, Leone L. Parameter estimation in a Gompertzian stochastic model for tumor growth. Biometrics. 2000;56:1076–81.CrossRefPubMed
16.
go back to reference Rofstad EK, Graff BA. Thrombospondin-1-mediated metastasis suppression by the primary tumor in human melanoma xenografts. J Invest Dermatol. 2001;117:1042–49.CrossRefPubMed Rofstad EK, Graff BA. Thrombospondin-1-mediated metastasis suppression by the primary tumor in human melanoma xenografts. J Invest Dermatol. 2001;117:1042–49.CrossRefPubMed
17.
go back to reference Cotran RS, Kumar V, Collins T. Patología Estructural y Funcional. 6th ed. S.A.U. Madrid: McGraw-Hill-Interamericana de España; 1999. Cotran RS, Kumar V, Collins T. Patología Estructural y Funcional. 6th ed. S.A.U. Madrid: McGraw-Hill-Interamericana de España; 1999.
18.
go back to reference Schuster R, Schuster H. Reconstruction models for the Ehrlich Ascites Tumor for the mouse. Mathematical Population Dynamics. 1995;2:335–48. Schuster R, Schuster H. Reconstruction models for the Ehrlich Ascites Tumor for the mouse. Mathematical Population Dynamics. 1995;2:335–48.
19.
go back to reference Prajneshu. Environmental stochasticity of Gompetz model with time delay. Comm Statist - Theory Methods. 1983;12:1359–69.CrossRef Prajneshu. Environmental stochasticity of Gompetz model with time delay. Comm Statist - Theory Methods. 1983;12:1359–69.CrossRef
20.
go back to reference Murray JD. Mathematical Biology, An introduction. New York: Springer; 2002. Murray JD. Mathematical Biology, An introduction. New York: Springer; 2002.
21.
go back to reference Waliszewski P, Konarski J. The Gompertzian curve reveals fractal properties of tumor growth. Chaos, Solitons and Fractals. 2003;16:665–74.CrossRef Waliszewski P, Konarski J. The Gompertzian curve reveals fractal properties of tumor growth. Chaos, Solitons and Fractals. 2003;16:665–74.CrossRef
23.
go back to reference Paszek MJ, Zahir N, Jonhson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8:241–54.CrossRefPubMed Paszek MJ, Zahir N, Jonhson KR, Lakins JN, Rozenberg GI, Gefen A, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005;8:241–54.CrossRefPubMed
24.
go back to reference Fuhrmann A, Staunton JR, Nandakumar V, Banyai N, Davies PCW, Ros R. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys Biol. 2011;8:015007.CrossRefPubMedPubMedCentral Fuhrmann A, Staunton JR, Nandakumar V, Banyai N, Davies PCW, Ros R. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells. Phys Biol. 2011;8:015007.CrossRefPubMedPubMedCentral
25.
go back to reference Zhang Q, Austin RH. Physics of cancer: the impact of heterogeneity. Annu Rev Condens Matter Phys. 2012;3:363–82.CrossRef Zhang Q, Austin RH. Physics of cancer: the impact of heterogeneity. Annu Rev Condens Matter Phys. 2012;3:363–82.CrossRef
26.
go back to reference Wang J, Kou HC, Gu XF, Li JS, Xing LQ, Hu R, et al. On discussion of the applicability of local avrami exponent: errors and solutions. Materials Lett. 2009;63:1153–55.CrossRef Wang J, Kou HC, Gu XF, Li JS, Xing LQ, Hu R, et al. On discussion of the applicability of local avrami exponent: errors and solutions. Materials Lett. 2009;63:1153–55.CrossRef
27.
go back to reference Liu F, Sommer F, Bos C, Mittemeijer EJ. Analysis of solid state phase transformation kinetics: models and recipes. Inter Mat Rev. 2007;52:193–212.CrossRef Liu F, Sommer F, Bos C, Mittemeijer EJ. Analysis of solid state phase transformation kinetics: models and recipes. Inter Mat Rev. 2007;52:193–212.CrossRef
28.
go back to reference Kooi BJ. Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: extension of the johnson-mehl-avrami-kolmogorov theory. Phys Rev B. 2004;70:224108.CrossRef Kooi BJ. Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: extension of the johnson-mehl-avrami-kolmogorov theory. Phys Rev B. 2004;70:224108.CrossRef
29.
go back to reference Maragoni AG, Wesdorp LH. Structure and Properties of Fat Crystal Networks. 2nd ed. Florida: CRC Press Taylor and Francis Group; 2004.CrossRef Maragoni AG, Wesdorp LH. Structure and Properties of Fat Crystal Networks. 2nd ed. Florida: CRC Press Taylor and Francis Group; 2004.CrossRef
30.
go back to reference Aloev VZ, Kozlov GV, Zaikov GE. Relationship between the exponent of the Kolmogorov-Avrami equation and the fractal dimension in the crystallisation of uniaxially stretched crosslinked polychloroprene. Int Polym Sci Tech. 2004;31:33–5. Aloev VZ, Kozlov GV, Zaikov GE. Relationship between the exponent of the Kolmogorov-Avrami equation and the fractal dimension in the crystallisation of uniaxially stretched crosslinked polychloroprene. Int Polym Sci Tech. 2004;31:33–5.
31.
go back to reference Markworth AJ, Lawrence GM. Kinetics of anisothermal phase transformations. J Appl Phys. 1983;54:3502–08.CrossRef Markworth AJ, Lawrence GM. Kinetics of anisothermal phase transformations. J Appl Phys. 1983;54:3502–08.CrossRef
32.
go back to reference Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Modeling of Data, in Numerical Recipes in C, The Art of Scientific Computing. 2nd ed. New York: Cambridge University Press; 1992. Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Modeling of Data, in Numerical Recipes in C, The Art of Scientific Computing. 2nd ed. New York: Cambridge University Press; 1992.
33.
go back to reference Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML, Hlatky L, et al. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol. 2014;10:e1003800.CrossRefPubMedPubMedCentral Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML, Hlatky L, et al. Classical mathematical models for description and prediction of experimental tumor growth. PLoS Comput Biol. 2014;10:e1003800.CrossRefPubMedPubMedCentral
34.
36.
go back to reference Chaplain MAJ. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumor development. Math Comp Model. 1996;23:47–87.CrossRef Chaplain MAJ. Avascular growth, angiogenesis and vascular growth in solid tumours: the mathematical modeling of the stages of tumor development. Math Comp Model. 1996;23:47–87.CrossRef
37.
go back to reference Hogea CS, Murray BT, Sethian JA. Simulating complex tumor dynamics from avascular to vascular growth using a general level set method. J Math Biol. 2006;53:86–134.CrossRefPubMed Hogea CS, Murray BT, Sethian JA. Simulating complex tumor dynamics from avascular to vascular growth using a general level set method. J Math Biol. 2006;53:86–134.CrossRefPubMed
38.
go back to reference Drasdo D, Höhme S. A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol. 2005;2:133.CrossRefPubMed Drasdo D, Höhme S. A single-cell-based model of tumor growth in vitro: monolayers and spheroids. Phys Biol. 2005;2:133.CrossRefPubMed
39.
go back to reference Izquierdo-Kulich E, Alonso-Becerra E, Nieto-Villar JM. Entropy production rate for avascular tumor growth. J Modern Phys. 2011;2:615.CrossRef Izquierdo-Kulich E, Alonso-Becerra E, Nieto-Villar JM. Entropy production rate for avascular tumor growth. J Modern Phys. 2011;2:615.CrossRef
40.
go back to reference Witten TA, Sander LM. Diffusion limited aggregation, a kinetic critical phenomenon. Phys Rev Lett. 1981;47:1400.CrossRef Witten TA, Sander LM. Diffusion limited aggregation, a kinetic critical phenomenon. Phys Rev Lett. 1981;47:1400.CrossRef
41.
go back to reference Roose T, Chapman SJ, Maini PK. Mathematical models of avascular tumor growth. SIAM Rev. 2007;49:179–208.CrossRef Roose T, Chapman SJ, Maini PK. Mathematical models of avascular tumor growth. SIAM Rev. 2007;49:179–208.CrossRef
43.
go back to reference Byrne HM, Chaplain MAJ. Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math Comp Model. 1996;24:1–17.CrossRef Byrne HM, Chaplain MAJ. Modelling the role of cell-cell adhesion in the growth and development of carcinomas. Math Comp Model. 1996;24:1–17.CrossRef
44.
go back to reference Mandelbrot B. Fractals, Form, Chance, and Dimension. San Francisco: Freeman; 1977. Mandelbrot B. Fractals, Form, Chance, and Dimension. San Francisco: Freeman; 1977.
45.
go back to reference Waliszewski P, Konarski J. A mystery of the Gompertz function. In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER, editors. Fractals in Biology and Medicine, Mathematics and Biosciences in Interaction Books. Germany: Birkhäuser Basel, Springer; 2005. p. 277–86.CrossRef Waliszewski P, Konarski J. A mystery of the Gompertz function. In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER, editors. Fractals in Biology and Medicine, Mathematics and Biosciences in Interaction Books. Germany: Birkhäuser Basel, Springer; 2005. p. 277–86.CrossRef
46.
go back to reference Shim EB, Kim YS, Deisboeck TS. Analyzing the dynamic relationship between tumor growth and angiogenesis in a two dimensional finite element model. 2007. arXiv:q-bio/0703015v1 [q-bio.TO]. Accessed 10 February 2016. Shim EB, Kim YS, Deisboeck TS. Analyzing the dynamic relationship between tumor growth and angiogenesis in a two dimensional finite element model. 2007. arXiv:q-bio/0703015v1 [q-bio.TO]. Accessed 10 February 2016.
47.
go back to reference Leibovitz A. Development of media for isolation and cultivation of human cancer cells. In: Fogh J, editor. Tumor cells in vitro. New York: Springer Science + Business Media, LLC; 1975. p. 23–50.CrossRef Leibovitz A. Development of media for isolation and cultivation of human cancer cells. In: Fogh J, editor. Tumor cells in vitro. New York: Springer Science + Business Media, LLC; 1975. p. 23–50.CrossRef
48.
go back to reference Molski M, Konarski J. Coherent states of gompertzian growth. Phys Rev E. 2003;68:0219161–7.CrossRef Molski M, Konarski J. Coherent states of gompertzian growth. Phys Rev E. 2003;68:0219161–7.CrossRef
49.
go back to reference Molski M. Biological growth in the fractal space-time with temporal fractal dimension. Chaotic Model Simul. 2012;1:169–75. Molski M. Biological growth in the fractal space-time with temporal fractal dimension. Chaotic Model Simul. 2012;1:169–75.
50.
go back to reference de Arruda PFF, Gatti M, Junior FNF, de Arruda JGF, Moreira RD, Junior LOM, et al. Quantification of fractal dimension and Shannon’s entropy in histological diagnosis of prostate cancer. BMC Clin Pathol. 2013;13:6.CrossRefPubMedPubMedCentral de Arruda PFF, Gatti M, Junior FNF, de Arruda JGF, Moreira RD, Junior LOM, et al. Quantification of fractal dimension and Shannon’s entropy in histological diagnosis of prostate cancer. BMC Clin Pathol. 2013;13:6.CrossRefPubMedPubMedCentral
51.
go back to reference Plankar M, Jerman I, Krašovec R. On the origin of cancer: Can we ignore coherence? Prog Biophys Mol Biol. 2011;106:380–90.CrossRefPubMed Plankar M, Jerman I, Krašovec R. On the origin of cancer: Can we ignore coherence? Prog Biophys Mol Biol. 2011;106:380–90.CrossRefPubMed
52.
go back to reference Izquierdo-Kulich E, Regalado O, Nieto-Villar JM. Fractal origin of the Gompertz equation. Rev Cub Fis. 2013;30:26. Izquierdo-Kulich E, Regalado O, Nieto-Villar JM. Fractal origin of the Gompertz equation. Rev Cub Fis. 2013;30:26.
53.
go back to reference Sekino M, Ohsaki H, Yamaguchi-Sekino S, Iriguchi N, Ueno S. Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI. Bioelectromagnetics. 2009;30:489–99.CrossRefPubMed Sekino M, Ohsaki H, Yamaguchi-Sekino S, Iriguchi N, Ueno S. Low-frequency conductivity tensor of rat brain tissues inferred from diffusion MRI. Bioelectromagnetics. 2009;30:489–99.CrossRefPubMed
54.
55.
go back to reference Stylianopoulous T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Co-evolution of solid stress and interstitial fluid pressure in tumors during progression: Implications for vascular collapse. Cancer Res. 2013;73:3833–41.CrossRef Stylianopoulous T, Martin JD, Snuderl M, Mpekris F, Jain SR, Jain RK. Co-evolution of solid stress and interstitial fluid pressure in tumors during progression: Implications for vascular collapse. Cancer Res. 2013;73:3833–41.CrossRef
56.
go back to reference Guha E. Basic Thermodynamics. India: Alpha Science International Ltd; 2000. Guha E. Basic Thermodynamics. India: Alpha Science International Ltd; 2000.
57.
go back to reference Sciumé G, Shelton S, Grat WG, Miller CT, Hussain F, Ferrari M, et al. A multiphase model for three-dimensional tumor growth. New J Phys. 2013;15:015005.CrossRefPubMedPubMedCentral Sciumé G, Shelton S, Grat WG, Miller CT, Hussain F, Ferrari M, et al. A multiphase model for three-dimensional tumor growth. New J Phys. 2013;15:015005.CrossRefPubMedPubMedCentral
Metadata
Title
Is cancer a pure growth curve or does it follow a kinetics of dynamical structural transformation?
Authors
Maraelys Morales González
Javier Antonio González Joa
Luis Enrique Bergues Cabrales
Ana Elisa Bergues Pupo
Baruch Schneider
Suleyman Kondakci
Héctor Manuel Camué Ciria
Juan Bory Reyes
Manuel Verdecia Jarque
Miguel Angel O’Farril Mateus
Tamara Rubio González
Soraida Candida Acosta Brooks
José Luis Hernández Cáceres
Gustavo Victoriano Sierra González
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2017
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-017-3159-y

Other articles of this Issue 1/2017

BMC Cancer 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine